

# GRADES 7-8 <br> 2014 GUIDE FOR IEACHERS 

$$
\sqrt{E S C}+20
$$

In
TEXAS EDUCATION AGENCY

## TABLE OF CONTENTS GRADE 7-8

UNIT 1 ..... 3-192
Lesson 1 ..... 3-76
Lesson 2 ..... 77-124
Lesson 3 ..... 125-192
UNIT 2 ..... 193-390
LESSON 1 ..... 193-280
LESSON 2 ..... 281-324
Lesson 3 ..... 325-390
UNIT 3 ..... 391-582
Lesson 1 ..... 391-462
Lesson 2 ..... 463-526
Lesson 3 ..... 527-582
UNIT 4 ..... 583-772
Lesson 1 ..... 583-642
Lesson 2 ..... 643-698
Lesson 3 ..... 699-772
UNIT 5 ..... 773-922
LESSON 1 ..... 773-850
LESSON 2 ..... 851-888
Lesson 3 ..... 889-922
UNIT 6 ..... 923-999
Lesson 1 ..... 923-960
Lesson 2 ..... 961-980
Lesson 3 ..... 981-999
Grades 7-8
Overview
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson. NOTE: All BLM are per student unless otherwise indicated.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine <br> 30-45 minutes | Pre-assess summer skills | Pre-assess summer skills | Administration of Pre-assessment |  | - Pre-assessment 1 per student |
| Classroom <br> Lesson <br> 30 min. - 1 hour | Compare rates of speed and unit rates from previous life experiences. | Discuss attributes (characteristics) of champions. Write words that describe attributes of champions and strategically place them on a Word Web. <br> Discuss and write vocabulary word from Ricardo's Race. | Vocabulary <br> Develop a word web which can be used after reading the story. <br> Literature <br> Use actual photos of Ricardo Romo to interest students in the real person. <br> Transition to Math Students connect ratios and rates to literature read during the Classroom Lesson. |  | - Word Web technology such as Inspirations (optional) <br> - BLM Vocabulary word cards (class set) <br> - Webbing instrument such as Inspirations or other tool for creating webs <br> - Ricardo's Race by Diane Gonzales Bertrand <br> - Individual student journals |
| Math Lesson 30 minutes | Write rates as ratios (fractions) with proper labels. <br> Compare rates with unit rates. <br> Draw a visual representation to compare two ratios. <br> Use a pattern to find equivalent ratios. Use cross multiplication to solve for an unknown. Create a graph to solve a rate problem. | Write rates and ratios using proper labels. <br> Talk about the differences between rates, ratios and unit rates. <br> Discuss problem solving strategies with peers. <br> Work with others to solve problems. <br> Talk about the differences between rates, ratios and unit rates. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Explore various strategies for solving problems that deal with rates and ratios. | - straight edge <br> - 4-function calculator (optional) | - BLM Rate Chart BLM Ricardo's Rate <br> - BLM Grid |


| Follow-up <br> Lesson <br> 30 min. - 1 hour (including Snack Fractions) | Write rates as ratios (fractions) with proper labels. <br> Compare rates with unit rates. <br> Draw a visual representation to compare two ratios. <br> Use a pattern to find equivalent ratios. Use cross multiplication to solve for an unknown. Create a graph to solve a rate problem. | Write rates and ratios using proper labels. <br> Talk about the differences between rates, ratios and unit rates. <br> Discuss problem solving strategies with peers. Work with others to solve problems. <br> Write out some differences between rates and unit rates. | Continue the lesson, check for understanding, model example rate or ratio problems if students need extra practice. <br> Writing Prompt <br> Class constructs an "I Learned/ I Still Don't Understand" chart. | - straight edge <br> - 4-function calculator (optional) | - BLM Racing Ratios Teacher Script Sheet <br> - BLM Graph - Teacher Script Sheet <br> - BLM Racing Ratios <br> - BLM Graph \#1 <br> - BLM Racing RatiosPractice Problems (per group) <br> - BLM Strategy Worksheet (4 per group) <br> - BLM Strategy Worksheet-Graph (4 per group) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Snack Fractions | Use add., sub., mult. and div. to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Explain solution strategies. | Students will work in pairs and explore fraction, decimal, and percent concepts through cutting and fair-sharing an apple. | - 1 large apple <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 2 plastic knives <br> All items listed above per partner pair | - BLM Apple Snack Fractions |

## Unit 1, Lesson 2

Ricardo's Race
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete
lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine 30-45 minutes | Solve word problems using a variety of strategies and defend their strategies. Model and solve 2-step word problems. Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - X Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 12 <br> - Graphing <br> - Money Matters | - Cardboard boxes (easy to cut apart such as cereal, shirt, etc.) <br> - ruler | - BLM Rectangular Prism-Measurement Lab Record Sheet <br> - scissors <br> - plain paper and pencil <br> - 1 " grid paper <br> - BLM Solve It! Problem 1-2 <br> - BLM Solve It! Problem 3 <br> - BLM Fraction Action <br> - BLM X Marks the Spot <br> - BLM Ricardo's Rate |
| Classroom <br> Lesson <br> $1-1.5$ hours | Use any strategy to find your personal speed walking unit rate. Compare your personal speed walking rate with Ricardo's rate. <br> Compare your personal speed walking rate with other moving objects. | Explain the strategy used to find your personal speed walking unit rate. Discuss vocabulary words and meanings with peers. Listen to Ricardo's Race. Use a Venn diagram to write out the differences between your life and Ricardo's life. | Vocabulary <br> Develop a Visual - Verbal Word Association card for each vocabulary word. <br> Literature <br> Venn diagram comparing Ricardo's life to students' lives. <br> Transition to Math <br> Students connect ratios and rates to literature read during the Classroom Lesson. |  | - BLM Vocabulary Building: Visual-Verbal Word Association (multiple copies per student) <br> - Interview with Dr. Ricardo Romo <br> - Venn diagram <br> - Author Diane Gonzalez Bertrand reads Ricardo's Race (MAS Space) |
| Math Lesson 30 minutes | Write rates as ratios (fractions) with proper labels. | Write rates and ratios using proper labels. <br> Talk about the differences | Vocabulary Use vocabulary pervasively in the lesson, including | - 4-function calculator | None |


|  | Compare rates with unit rates. <br> Draw a visual representation to compare two ratios. Use a pattern to find equivalent ratios. Use cross multiplication to solve for an unknown. Create a graph to solve a rate problem. | between rates, ratios and unit rates. <br> Discuss problem solving strategies with peers. Work with others to solve problems. | literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Explore various strategies for solving problems that deal with rates and unit rates. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up Lesson <br> $30-45$ minutes | Write rates and equalities as ratios with proper labels. Choose an equivalent ratio strategy to solve a ratio problem. | Write rates and ratios using proper labels. <br> Explain your problem solving strategy to peers. <br> Write a description of how a unit rate is more specific than a rate. | Continue the lesson, check for understanding, model example rate problems if students need extra practice. <br> Writing Prompt <br> Class constructs an "I Learned/ I Still Don't Understand" chart Add to the chart begun yesterday. | - straight edge <br> - 4-function calculator (optional) | - BLM Olympic Problem |
| Snack Fractions | Use add., sub., mult. and div. to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as speed, density, price, recipes, and studentteacher ratios. <br> Estimate and find solutions to application problems involving percent. | Discuss fraction comparisons. Discuss fraction equivalencies. | Students will work in pairs and explore fraction, decimal, and percent concepts through cutting and fair-sharing an ice cream sandwich. | - 1 large ice cream sandwich <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 1 plastic knife <br> - 2 pieces wax paper <br> - 2 pair of scissors All items listed above per partner pair | - BLM Ice Cream Sandwiches |

For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine 30-45 minutes | Find a pattern using the calendar and list special class events each day. Model and solve situational problems with fractions using pictures, numbers and words. Solve measurement situational problems involving circumference, diameter, height and volume. <br> Solve situational problems involving whole numbers in all operations. | Listen, read, speak, and write the problems. <br> Listen to, read, speak and write math vocabulary. Speak to partners, teacher, and class using vocabulary introduced in the Daily Routines. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 24 <br> - Graphing <br> - Money Matters | - cardboard cylinders (easy to cut apart such as cereal, shirt, etc.) <br> - ruler | - BLM Cylinder- <br> Measurement Lab Record Sheet <br> - scissors <br> - plain paper and pencil <br> - 1" grid paper <br> - BLM Solve It! Partner \#1-Problem 4 1 per pair <br> - BLM Solve It! Partner \#2-Problem 5 1 per pair <br> - BLM Fraction Action <br> - BLM $X$ Marks the Spot |
| Classroom <br> Lesson <br> $1-1.5$ hours | Discuss how daily activities use mathematical thinking. <br> Compare student generated measurements. | Read (out loud) vocabulary words and food labels. Create sentences using vocabulary words, and read them to your classmates. With peers, write a new vocabulary list from labels. Discuss similarities between Ricardo's life and classmates' lives. <br> Listen to Ricardo's Race and think about his positive choices. | Vocabulary <br> Play Hot Potato <br> Find English words on can labels ended by Gallery Walk. <br> Literature <br> Revisit the Venn, then list the positive moves Ricardo made in situations comparable to the students. <br> Transition to Math <br> Discuss findings from Cylinder-Measurement Lab activity (if completed). |  | - Word Web technology such as Inspirations (optional) <br> - Venn diagram from Lesson 2 <br> - Ricardo's Race by Diane Gonzales Bertrand |


| Math Lesson 30 minutes | Write rates as ratios with proper labels. <br> Compare rates with unit rates and serving costs. Use patterns to find equivalent ratios. Use cross multiplication to solve for an unknown. | Read food labels and price tags. <br> Discuss problem solving strategies with peers. Write ratios, unit rates and serving costs for food items. | Vocabulary <br> Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Find unit rates of comparable products and compare. Find rates per serving suggested on can. | - 4-function calculator | - Grocery bag with 8 pairs of canned vegetables <br> *Pair house-brand and name-brand cans of same soup but different quantity for comparison. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up Lesson 30-45 minutes <br> Family Fun *Optional Activity | Write rates as ratios with proper labels. <br> Compare rates with unit rates and serving costs. Use any strategy to solve serving cost problems. | Share and record can and label data with peers. <br> Write ratios, unit rates and serving costs for food items. Explain problem solving strategy to peers. Explain how finding unit rates can be helpful for you and your family. | Continue the lesson, circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt <br> Explain how unit rates can be helpful to you and your family. <br> Add to the chart begun in Lesson 1. | - 4-function calculator <br> - dominoes (1 set per pair +1 set per student to take home) | - Grocery bags and cans per team from Math Lesson <br> - BLM Canned GoodsRecord Sheet <br> - BLM Family Fun Game Board \#1 (per family) <br> - BLM Family Fun Materials and Special Instructions Sheet <br> - BLM What's In Your Pantry? |
| Snack Fractions | Use add., sub., mult. and div. to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as speed, density, price, recipes, and studentteacher ratios. <br> Estimate and find solutions to application problems involving percent. | Discuss fraction comparisons. Discuss fraction equivalencies. | Students will work in pairs and explore fraction, decimal, and percent concepts through cutting and fair-sharing string cheese. | - 5 large string cheese <br> - 4 paper dessert plates <br> - 4 paper towels <br> - 4 plastic knives <br> - 4 pieces wax paper <br> - 4 pairs of scissors All items listed above per group of 4 | - BLM String CheeseSnack Fractions |

# Project SMART/Math MATTERS 2014 

| Grade Level: 7-8 | Unit $1 /$ Lessons $1-2-3$ |
| :---: | :---: |

## Daily Routine Math Objectives:

Solve word problems using a variety of strategies and defend their strategies.
Model and solve 2 and 3-step word problems.
Find surface area of rectangular prisms and cylinders.
Compose and decompose values to show a new representation of the value.
Solve problems involving ratios, proportions, and similarity.

## Daily Routine Language Objectives:

Listen, read, speak, and write the problem.
Listen to, read, speak and write about measurement vocabulary.
Speak to partners, teacher, and class using vocabulary introduced in the Daily Routines.

## Unit Math Objectives:

Connect ratio to multiplication.
Solve single and multi-step problems involving rates of speed, ratios and unit rates (and unit pricing).
Generate equivalent ratios using visualization, estimation, patterns, cross multiplication and graphing to solve problems.
Compare student generated measurements.

## Unit Language Objectives:

Read, write and discuss vocabulary words, their meanings and differences.
Read and listen to Ricardo's Race.
Discuss and write varying aspects of Ricardo's Race and life situations.
Discuss problem solving strategies with peers.
Explain strategies to find equivalent ratios.
Read word problems.
Write rates, ratios and other steps involved in solving problems.

## Technology Objectives:

Use research skills and electronic communication, with appropriate supervision, to create new knowledge.

## Vocabulary

Math: ratio, equivalent, rate, unit rate
Language: encouraged, disappointed, champion, dedication, mentor

## Resources/Literacy Links <br> Ricardo's Race by Diane Gonzales Bertrand

## Lesson Sequence

- Daily Routine: $30-45$ minutes
- Classroom Lesson: 30 minutes -1 hour
- Math Lesson: 30 minutes
- Classroom Follow-up including Independent Writing: 30 minutes - 1 hour


## Enrichment Activities - These are BEYOND expectation

## Math Extensions:

Graph: Birthday graphing idea
Math Walk: Find an area suitable for the speed-walk in Lesson 2.
Graphing Experiences: $h t t p: / /$ fcit.usf.edu/math/lessons/lessons8.html
Extensions to Ratio Problems: http://math.rice.edu/~lanius/proportions/

## Strand Extensions:

Social Studies: Research the Hispanic influence in San Antonio.
http://www.answers.com/topic/san-antonio-history?cat=travel
http://www.sat.lib.tx.us/html/hispanic.htm
http://www.yale.edu/ynhti/curriculum/units/1984/3/84.03.01.x.html (generic -- USA)
http://www.orbitz.com/vacation-info/Texas/San-Antonio.html
http://www.hispanicprwire.com/news.php? $1=\mathrm{in} \& \mathrm{id}=8374 \& \mathrm{ch}=13$ (Hispanic Media awards)
http://www.hispanicheritage.org/images/press/San\ Antonio\ Press\ Release.pdf Hispanic
Heritage Youth Awards 2006
Science: Research safe running habits and develop a plan to help someone form a life habit of running or walking based on safe principles.
http://www.tinajuanfitness.info/articles/art072998.html http://running.about.com/od/running101/ht/runningsafely.htm
http://www.runtheplanet.com/trainingracing/safety/
http://www.ehow.com/how_14504_trail-run-safely.html
Art: Create a Hispanic art project. Some ideas can be found in these links:
http://www.princetonol.com/groups/iad/Files/mexico.htm
http://www.hispaniconline.com/hh02/education celeb hisp heritage school elem.html
Writing Workshop: http://www.hispanicheritage.org/about.php
Read about the Hispanic Heritage Foundation, and the Youth Programs which help Hispanic students enter college. Read some of the information about past awardees. Write a paragraph that describes where you want to be as a high school senior. If you can visualize it, you can achieve it.
Technology:
Math Basic Fact Practice:
Other Subject Integration:
Family Math: http:///lluminations.nctm.org/swr/review.asp?SWR=439
Article from PBS on starting a Family Math Night:
http://www.pbs.org/teachersource/whats new/math/tips0899.shtm
Google Earth - use Google Earth to find Ricardo's neighborhood in San Antonio:
http://earth.google.com/

## Unit 1 CGI Problems for Ricardo＇s Race

|  | Multiplication | Measurement Division | Partitive Division |
| :---: | :---: | :---: | :---: |
| 最 易 易 | Ricardo stacked $\qquad$ rows of $\qquad$ cans each．How many cans did he stack？ $(7,9)(23,7)(12,15)$ | Ricardo had $\qquad$ cans that he needed to display in equal rows of $\qquad$ cans each．How many rows can he make？ $\begin{aligned} & (56,8)(112,7) \\ & (336,21) \end{aligned}$ | Ricardo had $\qquad$ cans that needed to be boxed equally in $\qquad$ boxes．How many cans should he put in each box？ $(49,7)(288,12)$ $(216,9)$ |
|  | Ricardo ran $\qquad$ miles per hour．If he ran a constant rate， how many miles did he run in $\qquad$ hours？ <br> $(15,3)(12.2,3)$ <br> （12 1／2，3） | Ricardo ran $\qquad$ miles per hour．At that rate， how long did it take him to run $\qquad$ miles？ $\begin{aligned} & (15,45)(12.2,48.8) \\ & (121 / 2,371 / 2) \end{aligned}$ | Ricardo ran a total of $\qquad$ miles in $\qquad$ hours．If he ran at a constant speed，how many miles an hour did he run？ $\begin{aligned} & (45,3)(48.8,4) \\ & (50,4) \end{aligned}$ |
| ت巳ٍ | Ricardo＇s father sold $\qquad$ jars of peanut butter at $\qquad$ each． How much did he collect on peanut butter？ $\begin{aligned} & (15, \$ .27)(21, \$ .50) \\ & (124, \$ .75) \end{aligned}$ | Peanut butter costs $\qquad$ a jar．How many jars can you purchase for $\qquad$ ？ $\begin{aligned} & (\$ .25, \$ 1.50) \\ & (\$ .75, \$ 4.50) \\ & (\$ .95, \$ 5.70) \end{aligned}$ | Ricardo＇s father bought $\qquad$ jars of peanut butter for which he paid a total of $\qquad$ ．If each jar cost the same，what did he pay per jar？ <br> （12，\＄3．00） <br> （24，\＄18．00） <br> （36，\＄45．00） |


|  | Multiplicación | División para medir | División partitiva |
| :---: | :---: | :---: | :---: |
| 关 | Ricardo hizo $\qquad$ filas de $\qquad$ latas cada una. ¿Cuántas latas puso en las filas? $(7,9)(23,7)(12,15)$ | Ricardo tenía $\qquad$ latas que necesitaba exhibir en filas iguales de $\qquad$ latas cada fila. ¿Cuántas filas puede hacer? $\begin{aligned} & (56,8)(112,7) \\ & (336,21) \\ & \hline \end{aligned}$ | Ricardo tenía $\qquad$ latas que necesitaba poner en cantidades iguales en $\qquad$ cajas. ¿Cuántas latas debe poner en cada caja? $(49,7)(288,12)$ $(216,9)$ |
|  | Ricardo corrió $\qquad$ millas por hora. Si corrió a una velocidad constante, ¿cuántas millas corrió en $\qquad$ horas? $(15,3)(12.2,3)$ $(121 / 2,3)$ | Ricardo corrió $\qquad$ millas por hora. A esa velocidad, ¿cuánto tardó para correr $\qquad$ millas? $\begin{aligned} & (15,45)(12.2,48.8) \\ & (121 / 2,371 / 2) \end{aligned}$ | Ricardo corrió un total de $\qquad$ millas en $\qquad$ horas. Si corrió a una velocidad constante, ¿cuántas millas por hora corrió? $\begin{aligned} & (45,3)(48.8,4) \\ & (50,4) \end{aligned}$ |
| H | El papá de Ricardo vendió $\qquad$ frascos de crema de cacahuate a $\qquad$ cada uno. ¿Cuánto dinero recibió por venta de crema de cacahuate? <br> (15, \$.27) (21, \$.50) <br> (124, \$.75) | La crema de cacahuate cuesta $\qquad$ por frasco. ¿Cuántos frascos puedes comprar con $\qquad$ ? $(\$ .95, \$ 5.70)$ | El papá de Ricardo compró $\qquad$ frascos de crema de cacahuate y pagó un total de $\qquad$ . Si todos los frascos cuestan lo mismo, ¿cuánto pagó por cada frasco? <br> (12, \$3.00) <br> ( $24, \$ 18.00$ ) <br> (36, \$45.00) |


| Materials <br> - Pre-assessment | Unit 1, Lesson 1 Grades 7-8 <br> Daily Routine 695 |
| :---: | :---: |
| Math Objectives <br> - Pre-assess summer skills. |  |
| Language Objectives <br> - Pre-assess summer skills. <br> Math Vocabulary | Pre-assessment - The Daily Routines have been omitted to accommodate the administration of this tool. Please be sure to give the assessment as per the instructions under the Assessment Tab in your Teacher's Guide. |
| ratio <br> equivalent <br> rate | The following daily activities will help prepare your students for the Post-assessment. They are not optional. |
| Literature Vocabulary <br> encouraged <br> disappointed <br> champion <br> dedication <br> mentor | ESSENTIAL <br> Measurement Lab: <br> - Lesson 1 -omit <br> - Lesson 2 - Find area of faces \& surface area of rectangular prisms. <br> - Lesson 3 - Find area of parts and surface area of cylinders. |
| TEKS (denotes Texas Essential Knowledge and Skills that are taught in this unit) $7^{\text {th }} 7$ <br> $8^{\text {th }} 8$. | Solve It! Multi-step problem solving <br> - Lesson 1 - omit <br> - Lesson 2 - partners, 2-step problem <br> - Lesson 3 - partners, 2-step problem |
| ELPS (English Language Proficiency Standards - TX) 2C, 2E, 3D, 3E, 4F | Fraction Action <br> - Lesson 1 - omit <br> - Lesson 2 - BLM Fraction Action and X marks the Spot <br> - Lesson 3 - BLM Fraction Action and X marks the Spot <br> $X$ Marks the Spot <br> - Lesson 1 -omit <br> - Lesson 2 - BLM Fraction Action and X marks the Spot <br> - Lesson 3 - BLM Fraction Action and X marks the Spot <br> CGI <br> - Lesson 1 - omit <br> - Lesson 2 - Rate (assessment item 7) <br> - Lesson 3 - Price (assessment item 6) |
| Assessment Items <br> (As a result of experiencing this unit, students will learn skills necessary to be successful on the following Assessment items.) |  |
| 1 (ratio - Math Lesson) <br> 4 (ratio perspective - Math Lesson) <br> 5 (ratio perspective- Math Lesson) <br> 6 (rate - CGI) <br> 7 (unit rate - CGI) |  |


|  | Unit 1, Lesson 1 Grades 7-8 <br> Daily Routine - continued 6.30 |
| :---: | :---: |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all of these activities as your time permits. |
|  | $\frac{\text { OPTIONAL }}{\text { Target Number }}$ <br> - Lesson 1 - omit <br> - Lesson 2 - Target Number 12 <br> - Lesson 3 - Target Number 24 |
|  | Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

## > Genre: Informational Text (explanatory paragraph)

> Writing Objective: Students write an informational text that explains a goal they have for their future, and how they plan to reach that goal.

## $>$ Organization of text:

This text could be written as one paragraph, or elaborated into multiple paragraphs.

- Introductory sentence that explains their goal (or an introductory paragraph).
- Sentences explaining how they plan to reach their goal. (Or, different paragraphs explaining each part of their plan.)
- Concluding sentence (or a concluding paragraph).


## > Possible sequence of mini-lessons:

Brainstorm: Remind students of how Ricardo set an important goal for his future, and then made a plan to work towards it. Show students the following "Boxes and Bullets" graphic organizer, which is helpful for organizing a main idea and details:

## Ricardo wanted to get an athletic scholarship to go to college.

- He trained every day for running.
- He took more academic classes.
- He planned ahead to have time to train, work at the family store, and study.

Have students discuss what goals they could have for the future. Create a class list of possibilities, and help students visualize possibilities they might not have considered. Once students have brainstormed with you, have them complete their own "Boxes and Bullets" graphic organizer as a plan for their writing. Circulate and assist students as needed to help them brainstorm goals and a plan to reach that goal.

To help your students think about goals for their future, you can have them read about the Hispanic Heritage Foundation and the Youth Programs, which help Hispanic students enter college. They can read some of the information about past awardees. http://www.hispanicheritage.org/about.php

Draft: Model for students how to use the Boxes and Bullets graphic organizer to write an informational text:
$>$ The sentence in the box becomes part of their introductory statement.
$>$ The bullets each become elaborated sentences (or paragraphs) explaining how they want to reach their goal.
> The sentence in the box becomes part of their concluding statement.
Focus on showing students how to organize their writing with an introductory statement about their goal, sentences that explain how to reach the goal, and a concluding statement. Then, provide time for students to write their informational texts.

Revise: Model how students can elaborate their writing by including personal stories to illustrate why they chose that particular goal, or particular parts of their plan. When students are writing independently, circulate and ask students where they think they could add more detail to their writing.

Publish: If time permits, have students publish their writing on the last day. This should include a final version of their informational text, and if you wish, a drawing of the timeline of their own life with key events that have led up to them setting that particular goal.

| Materials |
| :--- |
| (BLM denotes |
| blackline masters |
| provided in the |
| curriculum) |
| - Ricardo's Race by |
| Diane Gonzales |
| Bertrand |
| - Word Web |
| technology such |
| as Inspirations |
| (optional) |
| - BLM Vocabulary |

Unit 1, Lesson 1
Classroom Lesson
Grades 7-8

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Compare rates of speed and unit rates from previous life experiences.


## Reading Objective:

- Understand a biography by pausing to think about details, and inferring what they author is really trying to say.


## Language Objectives:

- Discuss attributes (characteristics) of champions.
- Write words that describe attributes of champions and strategically place them on a Word Web.
- Discuss and write vocabulary words from Ricardo's Race.


## BEFORE READING

Building Background - Literature \& Vocabulary
Show the cover of the book to the class and read aloud the title. Ask students whether they think this book could be fictional or factual and to explain their reasoning. (It could be either.)

This is a real person who grew up in San Antonio, TX.
Ask students: Since this book is about the life of a real person, what genre would it be? (Biography) Explain that a biography is narrative nonfiction:

- Narrative: because it tells a story
- Nonfiction: because the story is about the real events from a real person's life.
Ask students: Have you ever been to San Antonio? What did you see and do? What did you notice about the city?


## Attribute Chart activity

Create the following attribute chart for the whole class to see.
Tell students: All of these words are adjectives to describe characteristics (or attributes) of people. From what you see on the cover of this book, and from what you've see on the Ricardo Romo website, which of these adjectives do you think could describe Ricardo in this biography? Talk with your partner.

| Technology Option If you have a projector or Smart Board, you can create the diagram using Inspiration software. Allow students to take turns adding concepts to the web. | Unit 1, Lesson 1 Classroom Lesson |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Attributes |  |  |  |  |  |  |  |
|  |  | dicate |  | disappointed | notivate | lazy | encouraged | hard working |
|  | Ricardo |  |  |  |  |  |  |  |
|  | Regroup the class, and for each adjective, call on a student to explain whether or not they think the adjective describes Ricardo. Use this discussion to explain the meaning of words as necessary. The words dedicated, disappointed, and encouraged are related to vocabulary words for this selection, so make sure you reinforce their meanings during this time. |  |  |  |  |  |  |  |
|  | Attributes |  |  |  |  |  |  |  |
|  |  | dedicated | rude | disappointed | motivated | lazy | encouraged | hard working |
|  | Ricard |  |  |  | x |  | x | x |
| ~Dl Genre Investigation: Bio Teach a mini-unit on biography as a literary genre. Here are some ideas that can be adapted to this book: http://www.readwrit ethink.org/classroom -resources/grade/78/ Role Models Discuss role models. How do role models help us all to set and achieve goals? Who were the role models for Ricardo? Who are student's role models and how are they helping students make and achieve personal goals? | Put marks under the attributes the class predicts will describe Ricardo. For example, at the end of the discussion your chart might look like this: <br> It doesn't matter if students' predictions are correct or not. After you read aloud this biography, students will revisit the chart and revise their predictions based on what they learned. In this example, students did not predict that Ricardo was disappointed. However, after hearing this read aloud they will have learned that Ricardo felt disappointed several times in his life. Champions have to learn how to use their disappointment as a motivation to work harder. <br> Timeline activity <br> In order to understand this biography, students need to know the terminology for the levels of schooling: <br> - Elementary school <br> - Middle school <br> - High school (college prep or "Tech") <br> - College/University: Undergraduate <br> - Freshman <br> - Sophomore <br> - Junior <br> - Senior <br> - College/University: Graduate <br> - Masters <br> - Doctorate <br> To introduce this vocabulary in a meaningful way, show students the beginnings of a timeline you have prepared (see BLM of Timeline). This timeline only has dates on it so far, and underneath the dates it shows what years in Ricardo's life correspond to the different types of schooling he went through. |  |  |  |  |  |  |  |


| Personal <br> Goals What are students' individual goals? What will it take to achieve them? Who are role models in their lives? | Unit 1, Lesson 1 <br> Grades 7-8 <br> Classroom Lesson - continued |
| :---: | :---: |
|  | Use this timeline to explain the above terminology about schooling. <br> Tell students that as you read the biography, you will add key events from Ricardo's life onto the timeline. Explain that you have these key events written on small sticky notes, and that you will pass them out to different students. When students hear the event written on their sticky note, they should wave the sticky note in the air, and you will have them come up to add it to the timeline. |
|  | Note: There are 15 sticky notes. If you have more students, simply make duplicates of certain sticky notes, so that two students are listening for those particular events. If you have less students, give the students with the strongest English proficiency two sticky notes to listen for. <br> Events to write on small sticky notes: <br> - Ricardo first helped his dad in their store. <br> - Ricardo went to first grade and learned English. <br> - Ricardo's father entrusted him to lock up the store for the first time. <br> - Ricardo started training with Coach Davis for running. <br> - The school counselor told Ricardo he should go to Tech instead of a college prep high school. <br> - Ricardo set an important goal to be the fastest runner in the state. <br> - Ricardo realized that running could earn him an athletic scholarship. <br> - Ricardo began taking academic classes like English, history, math, and science to prepare for college. <br> - Ricardo won the state championship, but still helped his parents at the store. <br> - Ricardo went to University of Texas in Austin with an athletic scholarship. <br> - Ricardo became the first Texan to run a mile in less than 4 minutes, and began to dream about competing in the 1968 Olympics. <br> - Ricardo married Harriet, who he met at college. <br> - Ricardo moved to California. He taught history and began a graduate program. <br> - Ricardo finished a doctorate degree in United States History. <br> - Ricardo became president of University of Texas in San Antonio. <br> DURING READING <br> Comprehensible Input - Literature and Vocabulary <br> During this first reading, the goal is to support students' comprehension of the text by modeling and practicing three reading strategies: <br> - Monitoring for Comprehension <br> - Determining Word Meaning <br> - Inferring (Ricardo's attributes, based on text evidence) |





|  | Unit 1, Lesson 1 <br> Classroom Lesson - continued <br> Objectives <br> Review both language and math objectives, making sure students understand how <br> they accomplished each. <br> Gis. |
| :--- | :--- |

Unit 1 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## encourage

## disappointed

## champion

## mentor

Unit 1 - Classroom Lesson - Vocabulary

# dedication 

## dedicatoria

## anımar

# decepcionado/a 

## campeón

## mentor

## Materials <br> (BLM denotes blackline masters provided in the curriculum) <br> - BLM Rate Chart <br> - BLM Ricardo's Rate <br> - BLM Grid <br> - Straight edge <br> - 4-function calculator (optional)

## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

encouraged
disappointed
champion
dedication
mentor

ELPS (English Language
Proficiency Standards
3D, 3J, 5B

ELPS (English Language Proficiency Standards 3D, 3J, 5B

## Instructional Note

The horizontal fraction bar is read as "per." Write "per" beside the bar.

## Unit 1, Lesson 1 Grades 7-8 <br> Math Lesson

## Math Objectives:

- Write rates as ratios (fractions) with proper labels.
- Compare rates with unit rates.
- Draw a visual representation to compare two ratios.
- Use a pattern to find equivalent ratios.
- Use cross multiplication to solve for an unknown.
- Create a graph to solve a rate problem.


## Language Objectives:

- Write rates and ratios using proper labels.
- Talk about the differences between rates, ratios and unit rates.
- Discuss problem solving strategies with peers.
- Work with others to solve problems.


## Building Background

Read and have students read with you a second time, the Math and Language Objectives for this portion of the lesson.

Students will work with unit rates of speed today - how fast did something move per one unit of measure.

For example, 55 miles per hour tells us that a vehicle moves 55 miles per ONE hour, or every hour. One hour is a single unit.

## Comprehensible Input

Show students RATE chart (BLM)

- 80 miles per hour (rate of speed on Texas highways in a very lowpopulation area, particularly West Texas)
- 75 miles per hour (rate of speed on Texas highways in a lowpopulation area, such as West Texas and parts of the Rio Grande Valley and Laredo area)
- 70 miles per hour (rate of speed on most Texas highways)
- 55 miles per hour (rate of speed on Texas highways other than Interstates, which are close to cities and towns)
- 35 miles per hour (rate of speed in many Texas cities)
- 20 miles per hour (rate of speed in many Texas school zones)

Show one of these rates as a ratio, explaining that these are ratios and can be expressed in fractional form:

Example: $\quad \underline{80 \text { miles }}$ per 1 hour





|  | Unit 1, Lesson 1 Grades 7-8 <br> Math Lesson - continued 6is |
| :---: | :---: |
|  | Tell us about your class. Write a class paragraph that tells us: <br> - where you go to school <br> - your teacher's name and your names <br> - something about the weather where you live now <br> - what crops are growing in the fields <br> - what you love about math <br> - what is still confusing about math. <br> - Work as a class to create a word problem using vocabulary from the literature book. <br> Objectives: <br> Read through the math and language objectives, making sure that students understand how they accomplished each. |

Unit 1 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## ratio

## equivalent

## rate

unit rate
proporción

## equivalente

## razón

## razón de unidad

One Teacher Transparency
One per student
Rate Chart

| Rate | Use |
| :---: | :--- |
| $\mathbf{8 0}$ miles per hour | (rate of speed on Texas highways in a very low- <br> population area, particularly West Texas) |
| $\mathbf{7 5}$ miles per hour | (rate of speed on Texas highways in a low- <br> population area, such as West Texas and parts of <br> the Rio Grande Valley and Laredo area) |
| $\mathbf{7 0}$ miles per hour | (rate of speed on most Texas highways) |
| $\mathbf{5 5}$ miles per hour | (rate of speed on Texas highways other than <br> Interstates, which are close to cities and towns) |
| $\mathbf{3 5}$ miles per hour | (rate of speed in many Texas cities) |
| $\mathbf{2 0}$ miles per hour | (rate of speed in many Texas school zones) |

One per student

## Ricardo's Rate

Ricardo was the first Texan who ran 1 mile in less than 4 minutes. Using a rate of 1 mile per 4 minutes, what is the distance he would travel in 1 minute?

Visualize a reasonable answer.
$\square$

Use the patterns of equivalent ratios to solve the problem.

Use cross multiplication to solve the problem.

Unit 1 Lesson 1 - Math Lesson
One per student

## La razón de Ricardo

Ricardo fue el primer texano que corrió 1 milla en menos de 4 minutos.
Usando una velocidad de 1 milla en 4 minutos, ¿qué distancia recorrería en un minuto?

Visualiza una respuesta razonable.
$\square$

Usa los patrones de razones equivalentes para resolver el problema.

Usa la multiplicación cruzada para resolver el problema.

Unit 1 Lesson 1 - Math Lesson
One per student
One Teacher Transparency


## Materials <br> (BLM denotes blackline masters <br> provided in the curriculum)

- Racing Ratios - Teacher Script Sheet
- Graph - Teacher Script Sheet
- BLM Racing Ratios
- BLM Graph \#1
- BLM Racing Ratios-Practice Problems
- BLM Strategy Worksheet
- BLM Strategy WorksheetGraph
- Straight edge
- 4-function calculator (optional)


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

encouraged
disappointed
champion
dedication
mentor

## ELPS (English Language

 Proficiency Standards - TX)2E, 2G, 3D, 3E, 3H, 4F, 5G

## Technology Option

If you have a projector or Smart Board, you can use an online graphing calculator to model how to solve these problems.
http://www.coolmath.com/graphit /index.html

## Unit 1, Lesson 1 <br> Follow-up <br> Grades 7-8

Math Objectives

- Write rates as ratios (fractions) with proper labels.
- Compare rates with unit rates.
- Draw a visual representation to compare two ratios.
- Use a pattern to find equivalent ratios.
- Use cross multiplication to solve for an unknown.
- Create a graph to solve a rate problem.

Language Objectives

- Write rates and ratios using proper labels.
- Talk about the differences between rates, ratios and unit rates.
- Discuss problem solving strategies with peers.
- Work with others to solve problems.
- Write out some differences between rates and unit rates.


## Practice and Application

The Classroom Teacher should repeat the same process as the Math Lesson format. Use the Teacher's Guided Example for your script if you'd like. Students should have a copy of the Racing Ratio Example and the Racing Ratio Problems. Walk through the example with the students, and then let them work comfortably in pairs or small groups to solve the other four problems.

## QUESTIONS

- Is this ratio a UNIT RATE? How do you know?
- Explain how you are finding the EQUIVALENT RATIO.
- How does the graph help you solve the problem?
- What did you visualize when you first looked at the problem to estimate a reasonable answer?
- Which method of solving for equivalent ratios do you prefer? Why?


## Recursive Review

None for today

## OD Writing Topics <br> Independent Writing Topic

Students will have a daily writing activity which will incorporate the day's focus math vocabulary.

- Explain how a UNIT RATE can differ from a RATE.



## Racing Ratios - TEACHER SCRIPT SHEET

Ricardo Romo was the first Texan who ran 1 mile in less than 4 minutes. Using a rate of 1 mile per 4 minutes, what is the distance he would travel in 2 minutes?

Visualize a reasonable answer. How did we visualize this in the math lesson? We drew a line that represented the original ratio (draw the line for the students, labeling it as you did in the math lesson). Then alter the line to match the second ratio. You actually solved the problem using this strategy, but you could have simply estimated the solution.

Use the patterns of equivalent ratios to solve the problem. Look at the original ratio. What is the relationship between the numerator and denominator? If the rate does not change, then the new ratio must have the same relationship.

Use cross multiplication to solve the problem. Multiply across, denominator to numerator, then solve for the unknown.

## Graph - TEACHER SCRIPT SHEET

The most important steps you take in using graphing as your solution strategy are: 1) identifying the dependent and independent factors; 2) then deciding on appropriate scales for each axis. We know that how far Ricardo ran depended on the time that he ran. So DISTANCE is dependent (y) and TIME is independent (x). Scale: We know that the greatest distance in this problem is one mile, and from our patterning, we can pretty well tell that we need quarter increments. The greatest TIME is 4 minutes, so we can spread that out evenly across the x axis.


We can plot our beginning point at $(0,0)$ because if he wasn't running, he didn't cover any distance in the race. The second point is $(4,1)$ because in 4 minutes he could cover 1 mile. Now all we have to do is to plot the point for the solution ratio.

We are given the time of 2 minutes. So, I need to find the y along this line for 2 minutes. Here it is halfway between 0 and 1 on the y axis. So in 2 minutes, Ricardo could run half a mile. The ratio then is $\frac{1}{2}$ to 2 .

One per student - Copy the Graph \#1 on the back of this sheet if possible.

## Racing Ratios

Ricardo Romo was the first Texan who ran 1 mile in less than 4 minutes. Using a rate of 1 mile per 4 minutes, what is the distance he would travel in 2 minutes?

Visualize a reasonable answer.
$\square$

Use the patterns of equivalent ratios to solve the problem.

Use cross multiplication to solve the problem.

Unit 1 Lesson 1 - Math Lesson
One per student

## La razón de Ricardo

Ricardo fue el primer texano que corrió 1 milla en menos de 4 minutos.
Usando una velocidad de 1 milla en 4 minutos, ¿qué distancia recorrería en un minuto?

Visualiza una respuesta razonable.
$\square$

Usa los patrones de razones equivalentes para resolver el problema.

Usa la multiplicación cruzada para resolver el problema.

Unit 1 Lesson 1 - Follow-up
One per student
One teacher transparency

Graph \#1

|  |  |  |  |  |  |  |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Racing Ratios - Practice Problems

Work cooperatively with a partner or small group to solve the next four problems using all of the strategies we used today. Your teacher will provide you with one Strategy Worksheet for each problem. For the graphing strategy, you will need to set up the graph with appropriate scales for the independent and dependent axis.

1. Ricardo Romo was the first Texan who ran 1 mile in less than 4 minutes. Using a rate of 1 mile per 4 minutes, what is the distance he would travel in 8 minutes?
2. Using a rate of 1 mile per 4 minutes, how long would it take Ricardo to run 3 miles?
3. Using a rate of 1 mile per 4 minutes, how long would it take Ricardo to run 5 miles?
4. Suppose Ricardo could run 1 mile in 3 minutes. At that rate, how long would it take him to run 5 miles?

## Racing Ratios - Practice Problems

Trabaja con un compañero o grupo pequeño para resolver los siguientes cuatro problemas usando todas las estrategias que usamos hoy. Tu maestro(a) te proveerá una hoja de estrategias para cada problema. Para la estrategia usando una gráfica, necesitarás preparar la gráfica con las escalas apropiadas en el eje independiente y el eje dependiente.

1. Ricardo Romo fue el primer texano que corrió 1 milla en menos de 4 minutos. Usando una velocidad de 1 milla en 4 minutos, ¿cuál es la distancia que recorrería en 8 minutos?
2. Usando una velocidad de 1 milla en 4 minutos, ¿cuánto le tomaría a Ricardo correr 3 millas?
3. Usando una velocidad de 1 milla por 4 minutos, ¿cuánto le tomaría a Ricardo correr 5 millas?
4. Supón que Ricardo puede correr 1 milla en 3 minutos. A esa velocidad, ¿cuánto le tomaría a Ricardo correr 5 millas?

Unit 1 Lesson 1 - Follow-up
Four per group Copy the graph on the back of this sheet if possible.

## Strategy Worksheet

Write the word problem in the box below.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Visualize a reasonable answer.
$\square$

Use the patterns of equivalent ratios to solve the problem.

Use cross multiplication to solve the problem.

Four per group Copy the graph on the back of this sheet if possible.
Strategy Worksheet
ESCRIBAN EL PROBLEMA EN EL SIGUIENTE RECUADRO.
$\qquad$
$\qquad$
$\qquad$

Visualiza una respuesta razonable.
$\square$

Usa los patrones de razones equivalentes para resolver el problema.

Usa la multiplicación cruzada para resolver el problema.

Unit 1 Lesson 1 - Follow-up
Four per group
$\qquad$

Materials
(BLM denotes blackline masters
provided in the curriculum)

- 1 large apple
- 2 paper dessert plates
- 2 paper towels
- 2 plastic knives
All items listed above per partner
pair
- BLM Apple-Snack Fractions
- BLM Apple-Snack Fractions


## Math Objectives

- Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals.
- Convert between fractions, decimals, whole numbers and percents.
- Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios).
- Estimate and find solutions to application problems involving percent.


## Language Objectives

- Explain solution strategies.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

encouraged disappointed
champion
dedication
mentor

Unit 1, Lesson 1
Grades 7-8
Snack Fractions


Students should wash their hands before this activity if using food items.

## Snack Fractions

As part of each math day, please include a quick "Snack Fraction" activity. If your district/school does not allow any snacks to be given to students, please alter the activity by providing a paper shape to be divided into fractional parts.

Tell students that each day you will have them share snacks with partners or small groups. Today, you are going to walk through the activity with them so they understand the format for the rest of the snack fraction activities for this unit.

Read through the BLM with the students, asking them each question and having them determine the answer before moving on to the next problem. Be sure you ask them to explain their thinking for every solution strategy used. An answer guide has been provided for you for this lesson based on 15 apples at a cost of $\$ 12.80$. You will, of course, need to alter the actual task based on your numbers.

The strategies suggested are certainly not the only strategies that could be used to solve the unit rate and proportion problems, but are helpful to students who don't yet understand the short cuts.

Please be sure to LABEL every part of proportions - students often get lost in what the numbers represent.

## Sharing Between Two People

- 7-8 graders should not have a problem with this portion. If they do, you know you need to spend more time developing the concept rather than jumping into the arithmetic processes. There are plenty of opportunities during the regular curriculum for this.


## Sharing Among Four People

- One stumbling stone could be the comparison of proportional unit costs of halves and fourths. Simply set up proportions for students to see the difference, and be sure to label each number in the proportions.


One per student

## Apple Snack Fractions

## Sharing Between Two People

Write a fraction representation of your snack portion:
Write a decimal representation of your snack portion: $\qquad$
What percent of the apple is your portion? $\qquad$
There are $\qquad$ apples in the room. The total cost for all of the apples was

What is the ratio of apples to students?
What is the cost of each student's portion of the snack?
$\qquad$
$\qquad$

## Sharing Among Four People

Write a fraction representation of your snack portion:
Write a decimal representation of your snack portion:
What percent of the apple is your portion?

Refer to the number of apples in the room and the actual cost based on sharing with a partner. How would sharing the apple among four students have changed the proportion of apples to students, the number of apples that would have been purchased for the group, and the total cost of the snack?

## Snack Operations

By what percent would your portion decrease if you shared with four people rather than with a partner?

## Snack Fraction Journal

Explain how you used ratio and proportion in this activity.

## Fracciones de refrigerio de manzana

## Compartir entre dos personas

Escribe una representación en fracciones de tu porción de refrigerio:
Escribe una representación decimal de tu porción de refrigerio:
¿Qué porcentaje de la manzana es tu porción?
Hay $\qquad$ manzanas en el salón de clase. El costo total de todas las manzanas fue de $\qquad$
¿Cuál es la relación de manzanas a estudiantes?
¿Cuál es el costo de la porción de refrigerio de cada estudiante?
$\qquad$

## Compartir entre cuatro personas

Escribe una representación en fracciones de tu porción de refrigerio:
Escribe una representación decimal de tu porción de refrigerio:
$\qquad$
¿Qué porcentaje de la manzana es tu porción?

Considera el número de manzanas en el salón de clase y el costo real basado en compartir con un compañero. ¿Cómo habrían cambiado la proporción de manzanas a estudiantes, el número de manzanas que se habrían comprado para el grupo y el costo total del refrigerio si se hubieran compartido las manzanas entre cuatro estudiantes?

## Operaciones con refrigerios

¿En qué porcentaje disminuiría tu porción si compartieras con cuatro personas en vez de con un compañero?

## Diario de fracciones de refrigerios

Explica cómo usaste las relaciones y proporciones en esta actividad.
$\qquad$ ,

We read an interesting story in class today called Ricardo's Race.

It is about...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Today in math we learned...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
My teacher would like for us to:

- Find situations at home where rate of speed is important.

Sincerely,
$\qquad$ ,

Leímos una historia muy interesante hoy que se titula La carrera de Ricardo.

Se trata da...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
En la clase de matemáticas aprendimos...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Mi maestro/a quiere que nosotros:

- Encontrar situaciones en casa donde la tasa de velocidad es importante.

Atentamente,

Materials

- BLM Rectangular PrismMeasurement Lab Record Sheet
- BLM Solve It! Problem 1-2
- BLM Solve It! Problem 3
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 2-3 CGI Ricardo's Race


## Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 2-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.
- Discuss scarcity of money, choices and cost benefit.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

encouraged
disappointed
champion
dedication
mentor

Unit 1, Lesson 2
Daily Routine
Grades 7-8

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - omit today
- Lesson 2 - Find area of faces $\&$ surface area of rectangular prisms.
- Lesson 3 - Find area of parts and surface area of cylinders.


## Lesson 2 Materials

- Cardboard boxes (easy to cut apart such as cereal, shirt, etc.)
- Scissors
- Plain paper / pencil
- 1 " Grid paper
- Ruler


## Lesson 2 Student Groups

- Cut apart faces of rectangular prism.
- Find the approximate area of each face of the prism.
- Label each part with the area, number and unit (such as 24 in $^{2}$ ).
- Find the approximate surface area of the rectangular prism.
- Write an explanation of how they found the surface area.

Solve It! Multi-step problem solving

- Lesson 1 - Omit
- Lesson 2 - partners, 2-step problem
- Lesson 3 - partners, 2-step problem


## Fraction Action

- Lesson 1 - Omit
- Lesson 2 - BLM Fraction Action and X marks the Spot
- Lesson 3 - BLM Fraction Action and X marks the Spot


## $X$ Marks the Spot

- Lesson 1 - Omit
- Lesson 2 - BLM Fraction Action and X marks the Spot
- Lesson 3 - BLM Fraction Action and X marks the Spot

CGI

- Lesson 1 - Omit
- Lesson 2 - Rate (assessment item 7)
- Lesson 3 - Price (assessment item 6)

| Assessment Items (As a result of experiencing this unit, students will learn skills necessary to be successful on the following Assessment items.) <br> 1 (ratio - Math Lesson) <br> 4 (ratio perspective - Math <br> Lesson) <br> 5 (ratio perspective- Math Lesson) <br> 6 (rate - CGI) <br> 7 (unit rate - CGI) | Unit 1, Lesson 2 Grades 7-8 <br> Daily Routine - continued 6is |
| :---: | :---: |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
|  | OPTIONAL <br> Target Number <br> - Lesson 1 - Omit <br> - Lesson 2 - Target Number 12 <br> - Lesson 3 - Target Number 24 <br> Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

Unit 1 Lesson 2 - Daily Routines - Measurement Lab
One per student

## Rectangular Prism - Measurement Lab Record Sheet

Students should work in small groups.

## Materials:

- Cardboard boxes (easy to cut apart such as cereal, shirt, etc.)
- Scissors
- Plain paper / pencil
- 1 " Grid paper
- Ruler


## Task:

1) Find the approximate area of each of the rectangular prism faces.
2) Label each face with the area (number and unit - for example $24 \mathrm{in}^{2}$ ).
3) Find the surface area of the rectangular prism - that's the total area of all of the faces.
4) Draw rectangles below to represent the faces, labeling each with dimensions and area.
5) Write an explanation of how you found the surface area of the rectangular prism.

## Unit 1 Lesson 2 - Daily Routines - Measurement Lab

## Rectangular Prism - Measurement Lab Record Sheet

Los estudiantes deben trabajar en grupos pequeños.

## Materiales:

- Cilindros de cartón (fáciles de recortar como cajas de cereal, etc.)
- Tijeras
- Papel y lápiz
- Papel con cuadrícula de 1 pulgada
- Regla


## Tarea:

1) Encuentra el área aproximada de cada una de las caras del prisma rectangular.
2) Etiqueta cada cara con su área (número y unidad - por ejemplo, $24 \mathrm{in}^{2}$ ).
3) Encuentra el área de la superficie del prisma rectangular- es decir, el área total de todas sus caras.
4) Dibuja las partes debajo para representar las caras, etiquetando cada una con sus dimensiones y su área.

Escribe una explicación de cómo encontraste el área de superficie del prisma rectangular.

Unit 1 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)
One per student

## Partner \#1 - Problem 1:

Jocelli treated Maryellen to lunch at their favorite café. Jocelli had the lunch special which was $\$ 8.95$, and Maryellen had the chef salad which was $\$ 5.95$. What was the cost of the two meals before tax?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |
|  |  |

## Partner \#2 - Problem 2:

Sales tax charged was $8 \%$. What was Jocelli's bill?

- What do you need from Problem 1 to solve Problem 2?
- Be sure to verify the answer to Problem 1 before solving Problem 2.
- What is the answer to the question? Show your solution strategy.

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |
|  |  |

Unit 1 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)
One per student

## Compañero \# 1 - Problema 1:

Jocelli invitó a Maryellen a comer a su café favorito. Jocelli pidió el almuerzo especial, que costaba $\$ 8.95$, y Maryellen pidió la ensalada del chef, que costaba $\$ 5.95$. ¿Cuál fue el costo de las dos comidas antes de impuestos?

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |
|  |  |

## Compañero \# 2 - Problema 2:

El impuesto de venta fue del $8 \%$. ¿Cuál fue la cuenta que pagó Jocelli?

- ¿Qué necesitas del problema 1 para resolver el problema 2?
- Asegúrate de verificar la respuesta del problema 1 antes de resolver el problema 2.
- ¿Cuál es la respuesta a la pregunta? Muestra tu estrategia de solución.

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |
|  |  |

## Unit 1 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)

One per student

Work with your partner to solve the problem.

## Problem 3:

It was Maryellen's turn to treat Jocelli to lunch. They rode their bicycles to their favorite sandwich shop. Maryellen's soup and sandwich combo was $\$ 10.95$ while Jocelli's turkey sub combo was $\$ 9.95$. They shared a $\$ 1.50$ cookie for dessert. It was tax free Saturday, but Monica left a $20 \%$ tip. What was the total bill?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

Unit 1 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)
One per student
Colabora con tu compañero para resolver el problema.

## Problema 3:

Era el turno de Maryellen de invitar a Jocelli a comer. Fueron en sus bicicletas a su tienda favorita de sándwiches. El combo de sándwich y sopa de Maryellen costó $\$ 10.95$, mientras que el combo de sándwich de pavo de Jocelli costó \$9.95. Las dos compartieron una galleta de $\$ 1.50$ de postre. Era un sábado sin impuestos, pero Monica dejó una propina de $20 \%$. ¿Cuál fue la cuenta total?

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |

Unit 1 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot

## Fraction Action

## Materials:

- Three 2 " x 6 " paper strips per student
- Crayons or makers
- Paper/pencil


## Task:

Fold and cut one strip into two equal pieces. Fold and cut one strip into four equal pieces. Fold and cut one strip into eight equal pieces.

Use the pieces to find equivalent fractions for $1 / 2,1 / 4,3 / 4$. Record your fractions below.

Explain how you know that each of your comparisons are indeed equivalent relationships.

On the back of this sheet, verify your equivalent fractions through another strategy (common denominator, draw a picture, proportion) and be able to explain your strategy.

## $X$ Marks the Spot

| Solve for $x$ in these two equations. |  |
| :--- | :--- |
| $\mathbf{5 x}=\mathbf{9 5}$ | $\mathbf{4 x + 3 = 9 5}$ |
|  |  |
|  |  |

## Unit 1 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot

## Acción con fracciones

## Materiales:

- Tres tiras de papel de $2 \times 6$ pulgadas por estudiante
- Crayones o marcadores
- Papel y lápiz

Tarea:
Dobla y corta una tira en dos partes iguales. Dobla y corta una tira en cuatro partes iguales. Dobla y corta una tira en ocho partes iguales.

Usa las piezas para encontrar fracciones equivalentes para $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}$. Registra tus fracciones abajo.

Explica cómo sabes que cada una de tus comparaciones es realmente una relación equivalente.

En la parte posterior de esta hoja, verifica tus fracciones equivalentes usando otra estrategia (común denominados, hacer un dibujo, proporción) y sé capaz de explicar tu estrategia.

## $X$ marca el sitio

| Resuelve para $x$ en estas dos ecuaciones. |  |
| :--- | :--- |
| $\mathbf{5 x}=\mathbf{9 5}$ | $\mathbf{4 x}+\mathbf{3}=\mathbf{9 5}$ |
|  |  |
|  |  |
|  |  |







|  | Unit 1, Lesson 2 <br> Classroom Lesson - continued |
| :--- | :--- |
|  | Transition to Math <br> Building Background - Math <br> In 1966, Ricardo became the first Texan to run a mile in less than four <br> minutes. <br> This is a rate of speed. One mile per four minutes. What other rates of speed <br> can students recall? Write their ideas on the board. Here are some in case <br> you need to get the ball rolling. Record all of their suggestions. Maybe they <br> remember some of the rates from last summer's readings? Use what they <br> know. |
| 55 miles per hour (some highways) <br> 35 miles per hour (some city streets) <br> 20 miles per hour (some school zones) |  |
| Students will use their knowledge of rates of speed today. The above <br> examples are UNIT RATES because they are the rate per a single unit, in <br> this case one hour (notice that the one mile per four minutes is NOT a unit <br> rate). Students will need this knowledge for the TV Lesson. |  |
| Objectives |  |
| Review both language and math objectives, making sure students understand |  |
| how they accomplished each. |  |

## Unit 1 Lessons 2, 3 - Classroom Lesson

Print multiple copies for students and have available for use at any time during the summer session.

## Vocabulary Building: Visual-Verbal Word Association

| Vocabulary Term | Personal Association |
| :---: | :---: |
| Definition | Non-Example |


| Vocabulary Term | Personal Association |
| :---: | :---: |
|  |  |
| Definition |  |
|  |  |

## Unidad 1

Lecciones 2 y 3 - Desarrollo de vocabulario: Asociación visual-verbal de palabras Imprima varias copias por estudiante y téngalas disponibles para usarlas en cualquier momento de la sesión de verano.

| Término de vocabulario | Asociación personal |
| :---: | :---: |
| Definición | No ejemplo |
| Término de vocabulario |  |
| Definición | Asociación personal |


| Materials | Unit 1, Lesson 2 7-8 |
| :---: | :---: |
|  | Math Lesson |
| Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate | Math Objectives: <br> - Write rates as ratios (fractions) with proper labels. <br> - Compare rates with unit rates. <br> - Draw a visual representation to compare two ratios. |
| Literature Vocabulary <br> encouraged <br> disappointed <br> champion <br> dedication <br> mentor | - Use a pattern to find equivalent ratios. <br> - Use cross multiplication to solve for an unknown. <br> - Create a graph to solve a rate problem. |
|  | Language Objectives: <br> - Write rates and ratios using proper labels. <br> - Talk about the differences between rates, ratios and unit rates. <br> - Discuss problem solving strategies with peers. <br> - Work with others to solve problems. |
|  | Building Background <br> Read through and quickly summarize the math and language objectives. Tell students that you also timed your speed-walk today, and that you could walk one mile in 20 minutes. Ask them to set up the ratio of miles to minutes then write the ratio. |
| Teacher Note Allows students to give ideas. | $20 \frac{1 \text { mile }}{\text { minutes }}$ |
|  | Is this a UNIT RATE? Allow class to discuss their thinking. |
|  | Have students find out the unit rate for your walking, or how far you can walk in ONE minute. |
|  | Comprehensible Input <br> First, have students estimate for reasonableness. About how far do you think I would walk in 1 minute? Use the visualization used in Lesson 1. |
|  | 1 mile |
|  | 20 minutes |

## Technology Option

Students may use calculators to divide decimals, as those specific calculations are not the focus of the problem/lesson. Laborious efforts to divide decimals may obscure the mathematical concept and true purpose of the problem/lesson.

## Teacher Note

Decimals should be read correctly to emphasize place value.

Ex: 0.05 is read five-hundredths

## Teacher Note

These are the same strategies as in lesson 1. A little less time will be spent on this portion so that the extension can be accomplished.

## Unit 1, Lesson 2

Math Lesson - continued

So, if I walk one mile in 20 minutes, and I break up the minutes into 20 one-minute pieces (do so)...
I can also break up one mile into 20 pieces (do so exactly as time is broken up). That means I can walk $1 / 20^{\text {th }}$ of a mile in one-minute. OR (calculator) one divided by 20 is 0.05 of a mile in one-minute.

Now look for a pattern in the relationship between the numerator and denominator of the known ratio.

$$
\begin{array}{l|l}
\mathbf{1} & \begin{array}{l}
\text { The numerator is one- twentieth the size of the } \\
\text { denominator. The denominator is } 20 \text { times larger }
\end{array} \\
\text { than the numerator. }
\end{array}
$$

I need to find a relationship where the denominator is ONE, and the numerator is a $20^{\text {th }}$ of ONE.

What does that mean? Talk to a partner to see if you can determine how to generate a numerator that is a $20^{\text {th }}$ of ONE. (pause)

I need to divide the numerator in 20 equal parts, then take one of them. One divided by $20=$ (long handed or calculator) 0.05 (five-hundredths). Same answer as our visualization.

Now try it arithmetically with the cross multiplication algorithm.


Denominator to opposite numerator.

$$
20 x=1
$$

To isolate the $x$ we have to divide by 20 on both sides.

$$
x=0.05
$$

So I can walk 5-hundredths of a mile in one-minute. The ratio is

### 0.05 mile

1 minute

|  | Unit 1, Lesson 2 <br> Math Lesson - continued |
| :---: | :---: |
| Technology Option <br> Use a graphing calculator to graph this one. | To use a graph to solve this problem, I'm going to use the graphing calculator. I COULD do it by hand, but to find 0.05 on a graph would be very tedious when I have a tool that can help me. (do so) <br> Once again, all three strategies have given me the same answer. I am quite confident now that if I walked at a constant rate of 1 mile in 20 minutes, then I would walk five-hundredths of a mile in ONE minute. The unit ratio is five-hundredths to one, and I can write that as $0.05: 1 \quad \text { or } \quad \frac{0.05}{1}$ <br> If I could keep up the same rate of walking, how long would it take me to walk five miles? <br> Go through the same processes: <br> --- visualize and estimate <br> --- find a pattern in the relationship <br> --- cross multiply <br> --- graph it. <br> Students will use their understanding of equivalent ratios to solve a conversion problem during the Follow-up Lesson. Remind students that conversions are simply ratios. <br> MAS Space <br> We would like to know how you compared your lives to Ricardo Romo's life up to being a $7^{\text {th }}$ grader. Use portions of everyone's letter to Dr. Romo and generate a class letter. Please post your class letter online. <br> Objectives: <br> Read through the math and language objectives, making sure that the students understand how they accomplished each. |



|  | Unit 1, Lesson 2 <br> Follow-up - continued |
| :---: | :---: |
|  | Use the chart begun in Lesson 1. Students should first read through the "I still don't understand..." column. What are ideas that can now easily be explained? Students should reflect for a few minutes before responding. Move any concepts to the "Today I learned..." that all students can now explain. Return to this every day to see how many of the "I still don't understand" statements move to the left by the end of the week. <br> Objectives <br> Review the math and language objectives to make sure that they were accomplished and that the students realize how they were accomplished. |

## Olympic Problem

## Important Information:

The Olympic record for running 1500 meters is 4.02 minutes.
1 mile is equal to 1.61 kilometers.
1 kilometer is equal to 1000 meters.

## Procedure:

There is no "mile run" in the Olympics, but the 1500 meter race is contested. Use the information above to help you determine the rate at which the record holder would run a mile if he ran it at the same speed he reached to set the record in the 1500 meter race above.

## Calculate:

Show all of your work and be ready to explain and justify your thinking. (HINT: Remember that conversions are ratios.)

Lección 2 - Problema de la lección de seguimiento

El récord olímpico para la carrera de 1,500 metros es 4.02 minutos.
1 milla es igual a 1.61 kilómetros.
1 kilometro es igual a 1,000 metros.

No hay una carrera de 1 milla en las Olimpiadas, pero si existe la carrera de 1,500 metros. Usa la información de arriba para determinar la velocidad a la que el poseedor del récord correría una milla si corriera a la misma velocidad que corrió al establecer el record mencionado arriba. Muestra todo tu trabajo y prepárate para explicar y justificar tu razonamiento. (PISTA: Recuerda que las conversiones son razones.)

| Materials <br> - 1 large ice cream sandwich <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 1 plastic knife <br> - 2 pieces wax paper <br> - 2 pair of scissors All items listed above per partner pair <br> - BLM Ice Cream SandwichSnack Fractions <br> Math Objectives <br> - Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> - Convert between fractions, decimals, whole numbers and percents. <br> - Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). <br> - Estimate and find solutions to application problems involving percent. <br> Language Objectives <br> - Discuss fraction comparisons. <br> - Discuss fraction equivalencies. <br> Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate <br> Literature Vocabulary <br> encouraged <br> disappointed <br> champion <br> dedication <br> mentor | Unit 1, Lesson 2 <br> Snack Fractions <br> Students should wash their hands before this activity if using food items. <br> Snack Fractions <br> As part of each math day, please include a quick "Snack Fraction" activity. If your district/school does not allow any snacks to be given to students, please alter the activity by providing a paper shape to be divided into fractional parts. <br> Tell students they will use the same process today that they used in the Snack Fraction for Lesson 1. They will first work through the record sheet together, then share the actual snack. <br> Circulate the room to make sure students understand the process from Lesson 1. Draw students' attention to the multiplication tasks. How is this different from Lesson 1? (In lesson 1, students had to find sentences whose sum was one. Today, students may use any fractional sentences using the two fractional parts; AND students will recognize a verbal multiplication problem. The sum does not have to equal one. Also, they are to find a subtraction sentence as well. Remind them that they may use the wax paper if they wish to trace and cut the pieces to model.) <br> Snack Fraction Journal Writing: BLM Ice Cream Sandwich Fractions <br> Explain how dividing by 2 and multiplying by $1 / 2$ result in the same answer. <br> Objectives: Review the objectives with the class, making sure they understand how they achieved each. |
| :---: | :---: |

## Unit 1 Lesson 2 - Snack Fraction

One per student

## Ice Cream Sandwich - Snack Fractions

## Sharing Between Two People

My name is $\qquad$ .


I shared an ice cream sandwich with my partner today.
We received $\qquad$ . (word)

I can tell that ONE-HALF of a whole $=$ ONE-HALF.
Here is the multiplication number sentence for that mathematical statement.
$\underline{1}=$ $\qquad$ $($ decimal $)$. My portion $=$ $\qquad$ $\%$ of the ice cream sandwich. 2

## Sharing Between Ten People

If there had been ten of us, my share would have been $\qquad$ . (word)

I can tell that ONE-TENTH of a whole $=$ ONE-TENTH.
Here is the multiplication number sentence for that mathematical statement.
$\frac{1}{10}=$ $\qquad$ (decimal). My portion = $\qquad$ \% of the ice cream sandwich.

## Sharing Between Six People

Draw a picture and write a number sentence that proves that half of one-sixth is one-twelfth. $\square$

## Extra Practice

Generate two fraction addition sentences and one fraction subtraction sentence using like-denominators from this lesson such as halves, sixths, and tenths.

Unit 1 Lesson 2 - Snack Fraction
One per student


Compartí mi sándwich de helado con un compañero/a hoy.

Cada uno recibimos $\qquad$ . (palabra)

Puedo notar que UNA MITAD de la parte entera $=$ UNA MITAD
Esta es la oración numérica de multiplicación para este hecho matemático:
$\underline{1}=$ $\qquad$ (decimal). Mi porción $=$ $\qquad$ \% del sándwich de helado. 2

Si éramos diez, mi porción sería: $\qquad$ . (palabra)

Puedo notar que UN DÉCIMO de la parte entera $=$ UN DÉCIMO.
Esta es la oración numérica de multiplicación para este hecho matemático:
$\frac{1}{10}=$ $\qquad$ $($ decimal $)$. Mi porción $=$ $\qquad$ \% del sándwich de helado.

## Compartiendo entre seis personas

Haz un dibujo y escribe una oracién numérica que hace prueba de que la mitad de un sexto es un duodécimo. $\square$

## Práctica adicional

Haz dos oraciones de suma con fracciones y una oración de resta con una fracción. Usa fracciones de denominadores iguales de esta lección como mitades, sextos y décimos.

## Unit 1 Lesson 2 - Family Fun

$\qquad$ ,

We read more of Ricardo's Race today.
Did you know that...
$\qquad$
My teacher would like for us to:

Sincerely,

Unit 1 Lesson 2 - Family Fun
Querido/a $\qquad$ ,

Hoy continuamos con la lectura de La carrera de Ricardo..

Sabías que...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Mi maestro/a quiere que nosotros:

Atentamente,

## Materials

- BLM Cylinder-Measurement Lab Record Sheet
- BLM Solve It! Problem 4
- BLM Solve It! Problem 5
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 2-3 CGI Ricardo's Race (listed in Lesson 2)


## Math Objectives

- Model and solve 2-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find lateral and total surface area of prisms.
- Find equivalent fractions.
- Compare the annual salary of several occupations requiring levels of post-secondary education or vocational training and calculate the effects of the different annual salaries on lifetime income.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.
- Discuss scarcity of money, choices and cost benefit.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

encouraged
disappointed
champion
dedication
mentor

## ELPS:

2C, 2I, 3E, 3H, 4C, 5B

Unit 1, Lesson 3
Grades 7-8
Daily Routine


The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

## Measurement Lab:

- Lesson 1 - omit today
- Lesson 2 - Find area of faces \& surface area of rectangular prisms.
- Lesson 3 - Find area of parts and surface area of cylinders.


## Lesson 3 Materials

- cylinders (easy to cut apart such as oatmeal boxes, toilet paper rolls, paper towel rolls, etc.)
- scissors
- plain paper / pencil
- 1" Grid paper
- ruler

Lesson 3 Student Groups

1) Carefully cut cylinders apart using the ruler to make a straight line down the curved surface.
2) Find the approximate area of each part of the cylinder.
3) Label each part with the area, number, and unit (such as 24 in $^{2}$ ).
4) Find the approximate surface area of the cylinder.
5) Write an explanation of how they found the surface area. *Remind students that the area of a circle is $\pi\left(\mathrm{r}^{2}\right)$

Solve It! Multi-step problem solving

- Lesson 1 - Omit
- Lesson 2 - partners, 2-step problem
- Lesson 3 - partners, 2-step problem


## Fraction Action

- Lesson 1 - Omit
- Lesson 2 - BLM Fraction Action and X marks the Spot
- Lesson 3 - BLM Fraction Action and X marks the Spot
$X$ Marks the Spot
- Lesson 1 - Omit
- Lesson 2 - BLM Fraction Action and X marks the Spot
- Lesson 3 - BLM Fraction Action and X marks the Spot

| Assessment Items <br> (As a result of experiencing this unit, students will learn skills necessary to be successful on the following Assessment items.) <br> 1 (ratio - Math Lesson) <br> 4 (ratio perspective - Math Lesson) <br> 5 (ratio perspective- Math Lesson) <br> 6 (rate - CGI) <br> 7 (unit rate - CGI) | Unit 1, Lesson 3 Grades 7-8 <br> Daily Routine - continued 6.85 |
| :---: | :---: |
|  | CGI <br> - Lesson 1 - Omit <br> - Lesson 2 - Rate (assessment item 7) <br> - Lesson 3 - Price (assessment item 6) |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. <br> OPTIONAL <br> Target Number <br> - Lesson 1-Omit <br> - Lesson 2 - Target Number 12 <br> - Lesson 3 - Target Number 24 <br> Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

Unit 1 Lesson 3 - Daily Routines - Measurement Lab
One per student

## Cylinder - Measurement Lab Record Sheet

Students should work in small groups.

## Materials:

- Cardboard cylinders (easy to cut apart such as cereal, shirt, etc.)
- Scissors
- Plain paper / pencil
- 1" Grid paper
- Ruler

Task:

1) Find the approximate area of each part of the cylinder.
2) Label each face with the area (number and unit - for example $24 \mathrm{in}^{2}$ ).
3) Find the surface area of the cylinder - that's the total area of all of the faces.
4) Draw the parts below to represent the faces, labeling each with dimensions and area.

Write an explanation of how you found the surface area of the cylinder.

Unit 1 Lesson 3 - Daily Routines - Measurement Lab
One per student

## Cilindro - Hoja de registro del laboratorio de medición

Los estudiantes deben trabajar en grupos pequeños.

## Materiales:

- Cilindros de cartón (fáciles de recortar como cajas de cereal, etc.)
- Tijeras
- Papel y lápiz
- Papel con cuadrícula de 1 pulgada
- Regla

Tarea:

1) Encuentra el área aproximada de cada una de las partes del cilindro.
2) Etiqueta cada cara con su área (número y unidad - por ejemplo, $24 \mathrm{in}^{2}$ ).
3) Encuentra el área de la superficie del cilindro - es decir, el área total de todas sus caras.
4) Dibuja las partes debajo para representar las caras, etiquetando cada una con sus dimensiones y su área.

Escribe una explicación de cómo encontraste el área de superficie del cilindro.

## Unit 1 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per pair
Solve your own problem today, showing your work. Verify your partner's problem solution when you both finish your own. Discuss your work.

## Partner \#1 - Problem 4:

Jocelli was buying clothes for her summer vacation. Luckily there was a sale at her favorite clothes store. All blouses were $40 \%$ off. She bought several items, but her favorite purchases were a blouse which was regularly priced $\$ 49.99$ and a matching pair of shorts for $\$ 29.95$. What did Jocelli pay for that outfit?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 1 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per pair

Hoy, resuelve tu propio problema, mostrando el procedimiento. Verifica la solución de tu compañero cuando ambos terminen de hacerlo por sí mismos. Hablen sobre su trabajo.

## Compañero \# 1 - Problema 4:

Jocelli estaba comprando ropa para sus vacaciones de verano. Por suerte, había una oferta en su tienda de ropa favorita. Todas las blusas tenían un descuento del $40 \%$ Ella compró varios artículos, pero sus compras favoritas fueron una blusa que tenía un precio normal de $\$ 49.99$ y un par de shorts a juego con un precio de $\$ 29.95$. ¿Cuánto pagó Jocelli por ese conjunto?

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |

Unit 1 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

Solve your own problem today, showing your work. Verify your partner's problem solution when you both finish your own. Discuss your work.

Partner \#2 - Problem 5:
Maryellen walked in the fruit aisle at the grocery store. She weighed out 8 pounds of apples which were $\$ 1.49$ per pound and 3 pounds of oranges costing $\$ 1.89$ per pound. What did those two purchases cost her?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 1 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per pair
Hoy, resuelve tu propio problema, mostrando el procedimiento. Verifica la solución de tu compañero cuando ambos terminen de hacerlo por sí mismos. Hablen sobre su trabajo.

## Compañero \# 2 - Problema 5:

Maryellen recorrió el pasillo de frutas en la tienda de víveres. Pesó 8 libras de manzanas que costaban $\$ 1.49$ por libra y 3 libras de naranjas que costaban $\$ 1.89$ por libra. ¿Cuánto le costaron esas dos compras?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 1 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot

One per student

## Fraction Action

## Materials:

- Scrap paper and pencil


## Task:

Annalisa combined $1 \frac{1}{2}$ cups of juice, $2 \frac{3}{4}$ cups of soda, and $1 \frac{2}{3}$ cups sherbet for a smoothie drink for her friends. What is the total volume of drink that she made?

On the back of this sheet, verify your equivalent fractions through another strategy (common denominator, draw a picture, proportion) and be able to explain your strategy.

## $X$ Marks the Spot

Solve for $x$ in these two equations.

| $(6 x+3)+(3 x+4)=17$ | $(6 x+3)$ <br> $+(3 x+4)$ |
| :--- | :--- |
|  |  |

Unit 1 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

Materiales:

- Papel borrador y lápiz


## Tarea:

Annalisa combinó $1 \frac{1}{2}$ tazas de jugo, $2 \frac{3}{4}$ tazas de soda, y $1 \frac{2}{3}$ taza de helado para una bebida licuada para sus amigos. ¿Cuál es el volumen total de bebida que hizo?

En la parte posterior de esta hoja, verifica tus fracciones equivalentes usando otra estrategia (común denominados, hacer un dibujo, proporción) y sé capaz de explicar tu estrategia

## $X$ marca el sitio

| Resuelve para $x$ en estas dos ecuaciones. |  |
| :--- | ---: |
| $\mathbf{( 6 x + 3 ) + ( 3 x + 4 ) = \mathbf { 1 7 }}$ | $\mathbf{( 6 x + 3 )}$ <br> $\mathbf{+ ( 3 x + 4 )}$ <br>  <br>  |

## Literature Selection <br> Ricardo's Race La carrera de Ricardo by Diane Gonzales Bertrand

## Materials

- Venn diagram from Lesson 2
- Ricardo's Race by Diane Gonzales Bertrand
- Word Web technology such as Inspirations (optional)


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

encouraged disappointed
champion
dedication
mentor

## Cll

Teams of students work together on one word, writing a paragraph that describes a scene or a person that would illustrate the word.
When all teams have written their paragraph, they take turns reading to the class and guessing which word they are describing. For example, can you guess which word I am describing? The walk home was very tiring. Arnie and his team had lost the game. They really wanted to win because it was the deciding game for the championship. Everyone was very sad. (The word is disappointed.)

## ELPS:

2C, 2E, 2H, 3D, 3E, 3H, 4C, 5B

## Unit 1, Lesson 3 <br> Classroom Lesson <br> Grades 7-8 <br> 

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Discuss how daily activities use mathematical thinking.
- Compare student generated measurements.


## Reading Objective

- Read a biography and look for text evidence to support your ideas.


## Language Objectives:

- Use the literature vocabulary to complete Visual-Verbal Word Associations and learn related word family words.
- Write a reading response using evidence from a biography.


## BEFORE READING

Practice and Application - Vocabulary
Visual-Verbal Word Association activity
To continue the vocabulary work form Lesson 2, have students work with a partner to create a Visual-Verbal Word Association sheet for each of the remaining two vocabulary words:

- champion
- dedication

ELLs: While students work independently on this activity, you can meet with a small group of beginning and intermediate ELLs to create the four parts of the Visual-Verbal Word Association posters collaboratively. For the "personal relationship" part, model how to use the word in a sentence, and write the sentence down so they can see it. Have your ELLs create a similar sentence based on your model.

## Gallery Walk

When students have finished, have them post their two sheets on the wall. Students take a gallery walk to read other students' Visual-Verbal Word Associations, thinking about which sentences are their favorites. Regroup the class and have students bring their sheets. Ask them to share which classmates had some of their favorite sentences. Those students read aloud their sentences to the class, and explain what made them think of that sentence (what their personal association is).

## GdGALLERY WALK:

Projects are taped to the wall around the room. Working teams visit each project with a specific goal for which to look, marking the project in some way (sticky notes, marks on paper, etc.). The walk is closed by the teacher and teams coming together and discussing what they found.

- What did they see that was different from what they had done themselves?
- What did they see that clarified a point for them?
- What did they see that they wanted to ask questions about?
- What notes were on their personal team's project they would like to address either as a "thank you for your thoughts," or as a clarifying statement about a question?


## [1]

Invite someone local to the classroom who has gone to college. Before the person arrives, have the students prepare a list of questions to ask the person and who will ask each, questions about mentors, encouragement, discouragement, persistency, dedication, and any other questions they might have (screened through you, of course).

## Unit 1, Lesson 3 <br> Classroom Lesson - continued

## Grades 7-8 <br> 

## Word Family activity

To continue the vocabulary work from Lesson 2, tell students they are going to add a Word Family word to their Visual-Verbal Word Association sheets for the words champion and dedication:
champion: championship
dedication: dedicated
Start with the word champion.

1. Ask students, "Are there any other words you know that are similar to this word? (Words that have the same root?)"
2. Based on what students share, introduce a word family word you want students to learn how to use. In this case, introduce the word championship.
3. Below the Visual-Verbal Word Association boxes, write the new word. You can write the word inside a house to indicate that it's part of the same "family." Have students do the same on their own sheet.
4. Explain the difference between the original vocabulary word and this new word. For example, one might be a verb, and the other might be a noun.
5. Model how to use the word in a sentence. Have students think of their own sentence using the word, and have them write it on their own sheet.
For example:

| champion <br> noun | My soccer team was the champion at the World Cup. |
| :---: | :---: |
| a person who is the best in a competition; a person who succeeds | loser |



ELLs: Beginning and early intermediate ELLs can write the sentence in their native language if necessary, or very closely model their sentence on the teacher's example. You can also briefly meet with individual ELLs or a small group to help them write a sentence while the rest of the class writes their own.
$\left.\begin{array}{|l|l|}\hline \text { Unit 1, Lesson 3 } \\ \text { Classroom Lesson - continued } \\ \text { Students should place their completed organizers in their vocabulary } \\ \text { binders. } \\ \text { Building Background - Literature } \\ \begin{array}{l}\text { Write the following question so all students can see it: "What do you } \\ \text { think would be Dr. Romo's advice for young people today?" Use } \\ \text { evidence from the text to support your opinion. }\end{array} \\ \begin{array}{l}\text { Tell students that today they will be reading the biography with a } \\ \text { partner, and as they read the text together, they should look for } \\ \text { examples of what advice they think Dr. Romo would give young people } \\ \text { today. Show students the T-Chart they can use to take notes while } \\ \text { reading (see BLM T-Chart). Put an example on the T-Chart as a model } \\ \text { for students to see how to use it. The T-Chart below has an example } \\ \text { you could use. } \\ \text { Once students understand how to use the T-Chart, provide copies for } \\ \text { each student or have them draw a simple T-Chart in their notebooks. } \\ \text { Pair up students as reading partners, and give each partnership a copy of } \\ \text { the text. Have them spread out to different areas of the room. }\end{array} \\ \begin{array}{ll}\text { Advice Dr. Romo might give } & \text { Why he would give that } \\ \text { advice: }\end{array} \\ \hline \begin{array}{l}\text { Example: } \\ \text { You should read all the time to } \\ \text { become a better student. }\end{array} & \begin{array}{l}\text { When Ricardo worked in his } \\ \text { family's store, he read the } \\ \text { labels on cans to learn how to } \\ \text { read in English and how to } \\ \text { spell words. }\end{array} \\ \text { Evidence from the text }\end{array}\right\}$


## Unit 1 Lesson 3, Classroom Lesson

Reading Response
What do you think would be Dr. Romo's advice for young people today? Use evidence from the text to support your opinion.
$\left.\begin{array}{|l|l|}\hline \text { Example: } \\ \text { You should always read and learn new words to be } \\ \text { a better student. }\end{array} \begin{array}{l}\text { When Ricardo worked in his family's store, he } \\ \text { read the labels on cans to learn how to read in } \\ \text { English and how to spell words. }\end{array}\right\}$

## Respuesta a la lectura

¿Cuál crees que sería el consejo del Dr. Romo para los jóvenes de hoy? Usa evidencias del texto para apoyar tu opinión.

| Ejemplo: <br> Siempre debes leer y aprender nuevas <br> palabras para ser un mejor estudiante. | Cuando Ricardo trabajó en la tienda de su <br> familia, leía las etiquetas en las latas para <br> aprender a leer en inglés y a deletrear <br> palabras. |
| :--- | :--- |


| Materials | Unit 1, Lesson 3 Grades 7-8 |
| :---: | :---: |
| - Grocery bag with 8 Pairs of | Math Lesson |
| *Pair house-brand and namebrand cans of same soup but different quantity for comparison. | Math Objectives: <br> - Write rates as ratios with proper labels. <br> - Compare rates with unit rates and serving costs. |
| Math Vocabulary ratio equivalent | - Use patterns to find equivalent ratios. <br> - Use cross multiplication to solve for an unknown. |
| rate unit rate | Language Objectives: <br> - Read food labels and price tags. |
| Literature Vocabulary encouraged | - Discuss problem solving strategies with peers. <br> - Write ratios, unit rates and serving costs for food items. |
| champion | Building Background |
| dedication mentor | After you have discussed today's math and language objectives, remind students that Ricardo helped his father in the grocery store. Mr. Romo was most likely very conscious of the UNIT RATE he was paying for |
| ELPS: <br> 3D, 3J, 5B | his merchandise and charging his customers. Sometimes the only way you can tell which buy is the better deal is to consider the unit price of each. Today, we'll be looking at cans and determining unit price. |
| Technology Option | Comprehensible Input <br> (TEACHER: The can sizes and prices are merely examples. Please |
|  | I have two cans of soup. One can is 18.5 ounces and cost me \$.78. The second can of another brand holds 14.5 ounces and cost me $\$ .59$. Both soups are similar in that they serve two people. Without considering the taste of either soup, which can is the better bargain? |
|  | Talk to your partner about how you would solve this problem. Do not solve it right now, just talk about a solution strategy. Allow students time to discuss solution strategies. |
| Teacher Note | There are several ways to solve this problem. I am going to find the UNIT RATE for each and compare them. |
| should be active. | $\text { Soup \#1: } \frac{\$ 0.78 \mathrm{per}}{\mathbf{1 8 . 5 ~ o z}}$ |
| D) Discussion | I'll set up my ratio to find an EQUIVALENT RATIO for one ounce. |
| As students quickly discuss, the teacher should listen to their use of the math vocabulary. <br> Encourage proper usage. |  |



| Technology Option Students may use calculators to solve the problems. | Unit 1, Lesson 3 Grades 7-8 <br> Math Lesson - continued 6.95 |
| :---: | :---: |
|  | compare because I do not have to add or subtract the quantities, just COMPARE them. So, I only multiply the numerator. |
| Teacher Note <br> It is crucial that students understand HOW the common denominator is created before allowing them to utilize this "shortcut." Allow discovery time by writing the equation example on the board and asking, "How does this shortcut produce a common denominator? Why is the common denominator insignificant to this particular problem situation?" Brackets provided highlight where the common denominator is created when cross multiplying. | I could multiply $2.95 / 7.25$ by $9.25 / 9.25$ and I could use $7.25 / 7.25$ to multiply the other ratio - but since I don't NEED to know the common denominator, I'm going to take the shortened step of just multiplying diagonally to find the two numerators. It's the same as cross multiplication. |
|  | $\frac{2.8275}{\text { com den }} \frac{7.25}{7.25} \times \frac{0.39 \mathrm{per}}{9.25 \mathrm{oz}} \gg \frac{0.295 \mathrm{per}}{7.25 \mathrm{oz}} \times \frac{9.25}{9.25} \frac{2.72875}{\text { com den }}$ |
|  | This ratio is a tiny bit larger, but not much. Guess now it depends on how hungry I am! |
|  | Repeat the entire exercise for another pair, making sure that you pause momentarily and let students try to figure each unit rate. |
|  | During the Follow-up activity students will work with their group to determine the unit rates and serving cost for each pair in their grocery bags. |
|  | After you finish your team grocery bags activity, I'm going to teach you a game using the skills we've learned in this unit. (Show the game board and dominoes.) You're going to take that game home tonight to play with the family. All of your siblings will bring home the same game board, and you will all use dominoes to make your numbers. You'll just have different directions on what to use the dominoes for depending on your grade level. You probably won't have a calculator at home, but that's OK because the numbers will be much simpler to work with in the game! |
|  | MAS Space |
|  | You were asked to discuss the book and tell whether you liked the book or did not like the book and tell your reasons why. Please collect your thoughts and write a class letter to the author, Diane Gonzales Bertrand, making sure you reference specific events in the book, or specific emotions the book made you feel, or specific encouragement and inspiration the book gave you. Share your class letter on MAS Space. |
|  | Objectives |
|  | Read through the math and language objectives, making sure that the students understand how they accomplished each. |

## Materials

- Grocery bags and cans per team from Math Lesson
- BLM Canned Goods-Record Sheet
- Family Fun Generic Game Board
- Family Fun Movement Cards
- Unit 1Family Fun Problem Cards (green)
- Family Fun Answer Key (all grade bands)
- Unit 1Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions
- dominoes ( 1 set per pair +1 set per student to take home)
- 4-function calculator


## Math Vocabulary

ratio
equivalent
rate unit rate

Literature Vocabulary
encouraged disappointed champion dedication mentor

## Unit 1, Lesson 3 <br> Follow-up <br> Grades 7-8

Math Objectives:

- Write rates as ratios with proper labels.
- Compare rates with unit rates and serving costs.
- Use any strategy to solve serving cost problems.


## Language Objectives:

- Share and record can and label data with peers.
- Write ratios, unit rates and serving costs for food items.
- Explain problem solving strategy to peers.
- Explain how finding unit rates can be helpful for you and your family.


## Practice and Application

Students complete the BLM Canned Goods-Record Sheet
independently or in small groups.
You should not have to model today. Walk around the room asking questions to clarify, explain and extend.

## QUESTIONS

- What do the numbers that you have written mean?
- How will you find the UNIT RATE?
- How will you compare the UNIT RATES?
- What information do you need to determine the cost of each serving?
- Why does cross multiplication work?
- When could you use cross multiplication?

When students have completed the practice pages, teach them how to play the Family Fun Game with Family Fun Game Board, Special Instructions for 7-8, and the dominoes. Send home the game today.

## Recursive Review <br> None for today

## OD Writing Topics

Independent Writing Topic
Students will have a daily writing activity which will incorporate the day's focus math vocabulary.

- Explain how finding UNIT RATES can be helpful to you and your family.

|  | Unit 1, Lesson 3Follow-up - continuedClass Writing Topic- I Learned/ I Still Don't Understand ChartToday I learned....-----------------------------------------Family Ftill don't understand ...Students will take the Family Fun game materials home to teach andplay with their families.ObjectivesReview the math and language objectives to make sure that they wereaccomplished and that the students realize how they wereaccomplished. |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Unit 1 Lesson 3 - Follow-up
One per student

## Canned Goods - Record Sheet

| Unit Price/Precio por unidad <br> Can/Bote \#1 |  |  | Price per Serving/Precio por porción <br> Can/Bote \#1 |  |
| :--- | :--- | :--- | :--- | :---: |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

## Unit 1 Lesson 3 - FAMILY FUN (Optional Activity)

One per student/family

## What's In Your Pantry?

Students worked with canned goods today and found the unit prices for many items. Find three items in your home that still have the price marked on them. Work with your child to complete the following.

## Item \#1:

Cost:

Net Weight: $\qquad$
Fraction: $\qquad$

Unit Price: $\qquad$

Item \#2:
Cost:

Net Weight: $\qquad$
Fraction:

Unit Price: $\qquad$

Item \#3:

Cost:
Net Weight: $\qquad$
Fraction:

## Unit Price:

$\qquad$

Unidad 1

Lección 3 - DIVERSIÓN FAMILIAR

## ¿Qué hay en su despensa?

Los estudiantes hoy trabajaron con productos envasados y aprendieron los precios unitarios para distintos artículos. Encuentre tres artículos en su hogar que todavía tengan el precio. Trabaje con su hijo(a) para completar lo siguiente.

Art. No 1 $\qquad$

Costo $\qquad$

Peso neto $\qquad$

Precio unitario $\qquad$

Art. No 2 $\qquad$
Costo $\qquad$
Peso neto $\qquad$

Precio unitario $\qquad$

Art. No 3 $\qquad$

Costo $\qquad$
Peso neto $\qquad$

Precio unitario $\qquad$

## Materials

- 5 large string cheese
- 4 paper dessert plates
- 4 paper towels
- 4 plastic knives
- 4 pieces wax paper
- 4 pairs of scissors

All items listed above per partner pair

- BLM String Cheese-Snack Fractions


## Math Objectives

- Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals.
- Convert between fractions, decimals, whole numbers and percents.
- Use division to find unit rates and ratios in proportional relationships such as (speed, density, price, recipes, and (student-teacher ratios).
- Estimate and find solutions to application problems involving percent.


## Language Objectives

- Discuss fraction comparisons.
- Discuss fraction equivalencies.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

encouraged
disappointed
champion
dedication
mentor

## Unit 1, Lesson 3 Snack Fractions

 items.

## Snack Fractions

As part of each math day, please include a quick "Snack Fraction" activity. If your district/school does not allow any snacks to be given to students, please alter the activity by providing a paper shape to be divided into fractional parts.

Tell students that today you will share among four students. Distribute the five pieces of string cheese and other supplies to the groups of four and let them decide how to share the string cheese and how much of the set each person received.

When everyone is finished, distribute the BLM String Cheese Fractions. Students work in their groups of four to solve the problem. Use class time to discuss the strategies and solutions once all have finished.

## Snack Fraction Journal Writing: BLM String Cheese Fractions

During the Snack Fractions activities for this unit you or your classmates may have noticed a relationship between the number of people the snack is being shared with and how many times the snack is "cut" or divided. Example: Three donuts are shared between four people.


Explain the relationship between the number of people eating the snack and how many times the snack was divided.

Objectives: Review the objectives with the class, making sure they understand how they achieved each.

## Unit 1 Lesson 3 - Snack Fraction

One per student

## String Cheese - Snack Fractions

My name is $\qquad$

## Problem:



Enrique had five pieces of string cheese to share among himself and three of his brothers.

## Questions:

1. What fractional portion of the set did each person receive?
2. How do you write one portion as a decimal?
3. What percent of the set did each person receive? Use a ratio to help you solve the problem.

## Unit 1 Lesson 3 - Snack Fraction

One per student

## String Cheese - Snack Fractions

Mi nombre es $\qquad$

## Problema:



Enrique tiene 5 trocitos de queso para compartir él y tres de sus hermanos.

## Preguntas:

4. ¿Que parte fraccionaria recibió cada persona?
5. ¿Cómo escribes una porción como decimal?
6. ¿Qué porcentaje del set recibió cada persona? Usa una proporción para ayudarte resolver el problema.

## Unit 1 Lesson 3 - Family Fun

Dear $\qquad$ ,

We continued our study of ratios today.

My teacher would like for us to:

- take a favorite recipe and show the family how to use ratios to increase the ingredients to serve 15 people.

Sincerely,

$\qquad$

Querido/a $\qquad$ ,

Continuamos con nuestros estudios de proporciones.

A mi maestro/o le gustaría que nosotros:

- revisar una receta favorita y hablar con la familia de cómo se usan las proporciones para aumentar las ingredientes para servir a 15 personas.


Atentamente,




BLM All-School Unit 1, Lesson 3
Answer Key

| Problem Letter | Kinder | 1-2 | 3-4 | 5-6 | 7-8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | This coin is a quarter. | (listen to the skip counting) | $\begin{array}{lllllll} \hline x & x & x & x & x & x \\ x & x & x & x & x & x \end{array}$ | 633.29 miles | $\frac{22 \text { boys }}{30 \text { girls }}$ |
| B | This coin is a dime. | (listen to the skip counting) | $\begin{array}{ll} \text { x } & x \\ \text { x } & \\ \text { x } \end{array}$ | \$3237.88 | $\frac{15 \text { girls }}{26 \text { total }}$ |
| C | This coin is a penny. | (listen to the skip counting) | $\begin{array}{rllll} x & x & x & x & x \\ x & x & x & x & x \\ \hline \end{array}$ | perimeter $=$ 99.5 meters | $\frac{14 \text { boys }}{33 \text { total }}$ |
| D | This coin is a quarter. | 5 cents | $3 \times 5=15$ | $\begin{gathered} \text { width }= \\ 10.75 \text { meters } \end{gathered}$ | $\frac{21 \mathrm{red}}{33 \text { total }}$ |
| E | This coin is a dime. | 10 cents | $2 \times 5=10$ | 334.325 yards | 6 cups of flour |
| F | This coin is a penny. | 1 cent | $2 \times 3=6$ | \$451.09 | $\frac{1}{4}$ cup of onions |
| G | This coin is a nickel. | 25 cents | There were 4 nickels in each bank. | \$35 for each yard | 12 cups of flour |
| H | This coin is a nickel. | 14 nickels | There were 2 stacks of 5 nickels. | \$2800 | $12 \frac{1}{2}$ cups sugar |
| I | This coin is a dime. | 11 quarters | any model equivalent to $1 / 2$ | \$744 | 11.5 oz of chocolate |
| J | Benny had 4 pennies. | 19 pennies | 4.05 | \$205 | 16 baskets |
| K | Benny had 2 pennies. | 11 pennies | 27.12 | \$675 | 20 baskets |
| L | Benny had 4 pennies. | 4 pennies | $\begin{array}{cc} 35 / 10 \text { or } \\ 31 / 2 \\ \hline \end{array}$ | \$11.75 per hr | Same. Ratios are equivalent at 2:3 |
| M | Benny had 5 pennies. | 3 pennies | Four and twenty-three hundredths | $\begin{gathered} \$ 660 \\ \text { (double } \$ 330 \text { ) } \end{gathered}$ | 12 blue |
| N | Benny had 5 pennies. | 7 pennies | 2 tenths | $\begin{gathered} \$ 165 \\ \text { (half of } \$ 330 \text { ) } \end{gathered}$ | 18 red |
| 0 | Benny had 0 or no pennies. | 14 pennies | 4 tenths | $\begin{gathered} x=\$ 100 \\ \text { (double 25, double } \\ 50 \text { ) } \\ \hline \end{gathered}$ | 16 yellow |
| P | (counts out 15 pennies) | Make a group of 5 and a group of 6 | $1.5<1.75$ <br> Less than | $\begin{gathered} x=56 \\ \text { (half of } 112 \text { ) } \end{gathered}$ | \$72.00 |
| Q | (counts out 12 pennies) | Make a group of 8 and a group of 8 | $\begin{gathered} 1.51>1.49 \\ \text { Greater than } \end{gathered}$ | $\begin{gathered} \$ 412.50 \\ \text { (half of } \$ 825 \text { ) } \end{gathered}$ | 50 minutes |
| R | (counts out 20 pennies) | Show 12 pennies and remove 6. | $1.2>1.02$ <br> Greater than | $\begin{gathered} \$ 150 \\ (50 \%=\$ 100,25 \% \\ =\$ 50, \text { combine }) \end{gathered}$ | Alicia - She runs $1 \frac{2}{3}$ blocks per min. |

Family Fun - Movement Cards

| Move <br> forward <br> 1 space | Move <br> forward <br> 1 space | Move <br> forward <br> 1 space |
| :---: | :---: | :---: |
| Move <br> forward <br> 1 space | Move <br> forward <br> 1 space | Move <br> forward <br> 1 space |
| Move <br> forward <br> 2 spaces | Move <br> forward <br> 2 spaces | Move <br> forward <br> 2 spaces |
| Move back | Move back <br> 1 space | Move back <br> 1 space |
| Move <br> forward <br> 3 3 spaces | Move <br> forward <br> 2 spaces | Move <br> forward <br> 3 spaces |

Units 1-2-3-- FAMILY FUN
One per student for home
One per partner pair in class

Family Fun - Movement Cards


## Print on goldenrod paper.

## Family Fun - Problem Cards (1 of 2)

## A. <br> What is the ratio of 11 boys to 15 girls? What would you expect the ratio to be if there were 30 girls in an equivalent proportion?

D.

If there are 21 red flags and 12 blue flags, what is the ratio of red flags to the total number of flags?
G.

A recipe feeding 2 people calls for 1.5 cups of flour. How much flour is needed to make a recipe to feed 16 people?
B.

If there are 11 boys and 15 girls, what is the ratio of girls to the total number of students?
E.

A recipe feeding 4 people calls for 1.5 cups of flour. How much flour is needed to make a recipe to feed 16 people?

## H.

A recipe feeding 4 people calls for 2.5 cups of sugar. How much sugar is needed to make a recipe to feed 20 people?

## C.

If there are 14 boys and 19 girls, what is the ratio of boys to the total number of students?
F.

A recipe feeding 8 people calls for 1 cup of onions. How many cups of onions would be needed to feed only 2 people?
I.

A recipe feeding 12 people calls for 5.75 ounces of chocolate. How much chocolate is needed to make a recipe to feed 24 people?

One per student for home
One per partner pair in class

## Print on goldenrod paper.

## Family Fun - Problem Cards (1 of 2)


D.

Si hay 21 banderas rojas y 12 banderas azules, ¿cuál es la relación de banderas rojas al número total de banderas?
G.

Una receta que rinde para 2 personas pide 1.5 tazas de harina. ¿Cuánta harina se necesita para hacer que la receta rinda para 16 personas?
B.

Si hay 11 niños y 15 niñas, ¿cuál es la relación de chicas al número total de estudiantes?

## E.

Una receta que rinde para 4 personas pide 1.5 tazas de harina. ¿Cuánta harina se necesita para hacer que la receta rinda para 16 personas?
H.

Una receta que rinde para 4 personas pide 2.5 tazas de azúcar. ¿Cuánta azúcar se necesita para hacer que la receta rinda para 20 personas?
C.

Si hay 14 niños y 19 niñas, ¿cuál es la relación de chicos al número total de estudiantes?

## F.

Una receta que rinde para 8 personas pide 1 taza de cebollas. ¿Cuántas tazas de cebollas se necesitarían para alimentar a sólo 2 personas?
I.

Una receta que rinde para 12 personas pide 5.75 onzas de chocolate. ¿Cuánta chocolate se necesita para hacer que la receta rinda para 24 personas?

Units 1 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class

## Print on goldenrod paper.

Family Fun - Problem Cards (2 of 2)

| J. <br> If a player's free-throw average is $4: 7$, how many baskets would be expected from 28 throws? | K. <br> If a player's free-throw average is $4: 5$, how many baskets would be expected from 25 throws? | L. <br> If one player's free-throw average is $2: 3$, and another's is 6:9, which player would be expected to make more baskets in 12 throws? |
| :---: | :---: | :---: |
| M. <br> Pamela selected paint with a color ratio of 3 blue to 7 white for 2 gallons. How much blue is needed to match the color for 8 gallons of paint? | N. <br> The ratio of red to yellow in one shade of orange is 6 to 9 . If there are 27 drops of yellow, how many drops of red are needed? | 0. <br> The ratio of blue to yellow in one shade of green is 7 to 8 . If there are 14 drops of blue, how many drops of yellow are needed? |
| P. <br> T-shirts are on sale 5 for $\$ 12$. At that price, what would 30 t shirts cost? | Q. <br> Alicia can run 3.1 miles in 25 minutes. At that speed, how long will it take her to run 6.2 miles? | R. <br> Martin can run 4 blocks in 2 minutes. Alicia runs 5 blocks in 3 minutes. Who runs faster? How do you know? |

Units 1 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class

## Print on goldenrod paper.

## Family Fun - Problem Cards (2 of 2)


K.

Si el promedio en tiros libres de un jugador es de 4:5, ¿cuántas canastas se esperarían de 25 tiros?
N.

La relación de rojo a amarillo en un matiz de anaranjado es de 6 a 9 . Si hay 27 gotas de amarillo, ¿cuántas gotas de rojo se necesitan?

## M.

Pamela seleccionó pintura con una relación de color de 3 azules a 7 blancos para 2 galones. ¿Cuánto azul se necesita para igualar el color para 8 galones de pintura?


## Q.

Alicia puede correr 3.1 millas en 25 minutos. A esa velocidad, ¿cuánto tardará en correr 6.2 millas?

## L.

Si el promedio en tiros libres de un jugador es $2: 3$ y el de otro es 6:9, ¿cuál jugador se esperaría que enceste más veces en 12 tiros?
O.

La relación de azul a amarillo en un matiz de verde es de 7 a 8 . Si hay 14 gotas de azul, ¿cuántas gotas de amarillo se necesitan?

## R.

Martin puede correr 4 manzanas en 2 minutos.
Alicia corre 5 manzanas en 3 minutos. ¿Quién corre más rápido? ¿Cómo lo sabes?

# Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions 

## Materials:

- Family Fun Generic Game Board
- Family Fun Movement Cards
- Unit 1 Family Fun Problem Cards (green)
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 1 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions


## Solution Expectations

## Problems A-R

All of the problems are asking students to find equivalent ratios, but the situations are quite different. It is important for students to understand that even though the context of the problem situations vary between ratios of people and things, price, and rates, solving them is essentially the same.

The numbers chosen for these problems are compatible and shouldn't need laborious efforts to calculate. Simple number sense and relationships should allow students to calculate the answer mentally or with very little work.

## Card P:

T-shirts are on sale 5 for $\$ 12$. At that price, what would 30 t -shirts cost?
Students need to keep track of their units/labels when writing the ratio in fraction form.

$$
\frac{5 \text { shirts }}{\$ 12}=\frac{30 \text { shirts }}{\$ x}
$$

Solution Strategy: I know to get from 5 shirts to 30 shirts I have to multiply by 6. In other words, I have 6 groups of 5 shirts. If each group of 5 shirts costs $\$ 12$, then 6 groups of $\$ 12$ will equal $\$ 72$. Basically, you take the ratio of 5:12 and multiply the numerator and denominator by 6 to find your answer.

## Instrucciones especiales de juego para $7^{\circ}-\mathbf{8}^{\mathbf{0}}$

## Materiales:

- Tablero de juego genérico de Diversión Familiar
- Cartas de movimiento de Diversión Familiar
- Cartas de problemas de Diversión Familiar de la Unidad 1 (verdes)
- Guía de respuestas de Diversión Familiar para la Unidad 1 (todos los grados)
- Instrucciones especiales de Diversión Familiar Unidad 1 para $7^{\circ}-8^{\circ}$


## Expectativas de solución

## Problemas A-R

Todos los problemas piden a los estudiantes que encuentren relaciones equivalentes, pero las situaciones son muy diferentes. Es importante que los estudiantes entiendan que aun cuando el contexto de las situaciones de los problemas varíe entre relaciones de personas y cosas, precios y tasas, el modo de resolverlos es esencialmente el mismo.

Los números elegidos para estos problemas son compatibles y los cálculos no deben ser laboriosos. Un simple sentido de los números y las relaciones debe permitir a los estudiantes calcular la respuesta mentalmente o con muy poco trabajo.

## Carta P:

Las camisetas están en oferta de 5 por $\$ 12$. A ese precio, ¿cuánto costarían 30 camisetas?

Los estudiantes deben estar al tanto de sus unidades/etiquetas al escribir la relación en forma de fracción.

$$
\frac{5 \text { shirts }}{\$ 12}=\frac{30 \text { shirts }}{\$ x}
$$

Estrategia de Solución: Sé que para ir de 5 camisetas a 30 camisetas tengo que multiplicar por 6 . En otras palabras, tengo 6 grupos de 5 camisetas. Si cada grupo de 5 camisetas cuesta $\$ 12$, entonces 6 grupos de $\$ 12$ equivaldrán a $\$ 72$. Básicamente, tomas la relación de 5:12 y multiplicas el numerador y el denominador por 6 para encontrar la respuesta.

## Math Matters 2014 - In-Home Instruction

## Math Objectives <br> Math Lesson 1

- Write rates as ratios (fractions) with proper labels.
- Compare rates with unit rates.
- Draw a visual representation to compare two ratios.
- Use a pattern to find equivalent ratios.
- Use cross multiplication to solve for an unknown.
- Create a graph to solve a rate problem.


## Math Lesson 3

- Write rates as ratios with proper labels.
- Compare rates with unit rates and serving costs.
- Use patterns to find equivalent ratios.
- Use cross multiplication to solve for an unknown.


## Students should also be administered the Pre-assessment.

## Differentiate

From the math objectives listed above, select the instruction your student needs.

## Snack Fraction Notice

All snack fractions are common throughout the grade bands. All grade bands have daily snack fraction activities provided. All snack fractions for a unit in a specific grade band will practice the same set of skills.
Therefore, you may choose from any of the three activities. Lesson 1 has been suggested for this Unit in all grade bands for its ease of delivery.

## Materials

Math Lesson 1

- BLM Rate Chart
- BLM Ricardo's Rate
- BLM Grid
- Straight edge
- 4 -function calculator (optional)

Math Lesson 3

- 4 -function calculator
- Grocery bag with 8 pairs of canned vegetables
- *Pair house-brand and name-brand cans of same soup but different quantity for comparison.

Family Fun

- Family Fun Generic Game Board \#1
- Family Fun Movement cards
- Unit 1 Family Fun-Problem Cards
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 1 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions
- Game markers
- 4 -function calculator

Snack Fractions (Math Lesson 1)

- 1 large apple per pair
- 2 paper dessert plates
- 2 paper towels
- 1 plastic knife
- 2 small pieces wax paper
- 2 pair scissors

All items listed above per partner pair

- BLM Apple Snack Fractions


## Math Matters 2014 - In-Home Instruction

## QUESTIONING

As a result of this lesson, your students should be able to respond to the following:

- What is a ratio?
- What is a unit rate?
- Explain how to find equivalent ratios
- How does a graph help you find equivalent ratios? Unit rates?
- What did you visualize when you first looked at the problems to estimate a reasonable answer?
- Which method of solving for equivalent ratios do you prefer? Why?
- Does the type of problem and the ratios involved make any difference in the type of strategy you would use? Explain.


## Math Vocabulary

ratio, equivalent, rate, unit rate

## CGI Problem

- rates


## Journal Writing

Explain how to use one strategy for finding unit rates.

## Family Fun

A generic game board is being used in all grade levels, differentiated by game cards specific to the grade level.

## Snack Fractions

Students divide their snack into varying portions and determine the fraction, decimal, and percent of each.

## Assessment

Students will be introduced to and practice skills for items $6 \mathrm{a}, \mathrm{b}, \mathrm{c} ; 7$
Grades 7-8
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit 2, Lesson 1 Daily Routine $30-45 \text { minutes }$ | Solve word problems using a variety of strategies and defend their strategies. Model and solve 2-step word problems. Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 48 <br> - Graphing <br> - Money Matters | - cardboard boxes (easy to cut apart such as cereal, shirt, etc.) <br> - ruler | - BLM Measurement Lab-Rectangular Prism Record Sheet <br> - Scissors <br> - Plain paper /pencil <br> - 1" Grid paper <br> - BLM Solve It! Problems 1-2 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM CGI-Zack Proton and the Wrong Planet |
| Classroom <br> Lesson 1 <br> 30 min. -1 hour | Discuss and share length and width measurements of rectangles. <br> Discuss and share area calculations using measurements. Discuss and share area calculations using arrays. Create a construction (model) using defective items. | Discuss outer space with peers. <br> Discuss construction (model) with peers. <br> Read and listen to Zack Proton and the Wrong Planet. | Vocabulary Create construction using defective items and describe. <br> Literature <br> Read portion of book, enjoying comic genre. <br> Transition to Math <br> Students connect ratios and rates to literature read during the Classroom Lesson. | - Bag or box of defective items such as: broken plastic ware, broken toys, broken sticks, flat balls, bottle corks, broken lids, small cylinders or prism with holes, etc. - anything that unless repaired could no longer be used for original purpose they are DEFECTIVE. | - Word Web technology such as Inspirations (optional) <br> - BLM Vocabulary word cards <br> - BLM Vocabulary Construction 1 per student <br> - Classroom Lesson <br> - Vocabulary cards 1 set per student <br> - Masking tape, glue, string <br> - Scraps of Construction paper, wrapping paper, foil, plastic wrap, colorful cardboard <br> - Box or cylinder or jug <br> - Spools or other round items <br> - Markers or crayons <br> - Classroom set of literature books |


| Math <br> Lesson 1 <br> 30 minutes | Use grid paper to measure length and width of rectangles. <br> Calculate area of rectangles. <br> Compare areas (equivalent ratios) using visual representations, patterns, and cross multiplication. | Discuss strategies to determine areas and equivalent ratios. Explain personal strategies used to find equivalent ratios. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Teach several methods for finding equivalent ratios. | - customary ruler | - Scissors <br> - Tape <br> - Math Lesson vocabulary cards <br> - BLM Piggy Spaces cutouts with border <br> - BLM Piggy SpacesPractice Problems |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up <br> Lesson 1 <br> 30 min. -1 hour (including Snack Fractions) | Choose a strategy to compare areas. Use equivalent ratios to solve problems. | Discuss strategies used to determine areas and equivalent ratios with peers. Explain the strategy used to find equivalent ratios. Write about your knowledge of equivalent ratios. | Continue the lesson, modeling another problem before circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt What do I know about equivalent ratios? | - dominoes (1 set for 4 students) <br> - dice (1 per 4 students) | - BLM Piggy Spaces Record Sheet <br> - BLM Domino Blast Off Directions <br> - BLM Domino Blast Off Game Board <br> - Game markers <br> - BLM Multiplication Chart-Equivalent Ratios <br> - BLM Recursive Review Problems Lessons 1-3 |
| Snack Fractions Lesson 1 | Use add., sub., mult. and div. to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss fraction comparisons. Discuss fraction equivalencies. Adding and subtracting likedenominators. | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing veggies and dip. | - 1 cup guacamole or other dip <br> - 6 carrots (small) <br> - 2 half-cup measuring cups <br> - 2 plastic spoons <br> - 2 paper dessert plates <br> - 2 paper towels All items listed above per partner pair | - BLM Dip 'n VeggiesSnack Fractions |

Grades 7-8

Zack Proton and the Wrong Planet
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit 1 Lesson 2 Daily Routine $30-45 \text { minutes }$ | Solve word problems using a variety of strategies and defend their strategies. Model and solve 2-step word problems. <br> Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 20 <br> - Graphing <br> - Money Matters | - cardboard cylinders (easy to cut apart such as cereal, shirt, etc.) <br> - ruler <br> - Fraction Math Balance | - BLM CylindersMeasurement Lab Record Sheet <br> - scissors <br> - plain paper and pencil <br> - 1" grid paper <br> - BLM Solve It! Problem 3 <br> - BLM Fraction Action and $X$ Marks the Spot |
| Classroom Lesson 2 1-1.5 hours | Observe and find patterns within an equivalent ratios chart. | Explain how to use a multiplication chart to find equivalent fractions. Discuss and share vocabulary word associations with peers. Tell classmates your favorite part of Zack Proton and the Wrong Planet. <br> Read and listen to Zack Proton and the Wrong Planet. Discuss with peers the patterns within an equivalent ratios chart. | Vocabulary Create Word Association charts. <br> Literature <br> Could also listen to the author's rendition of one of the chapters. <br> Play Domino Blast Off Game \& discuss patterns in the suggested equivalent ratios BLM. <br> Transition to Math Students connect equivalent ratios to literature through the Domino Blast-Off Game. | - set of dominoes per group | - BLM Lesson 2, 3 Word Association Charts <br> - Domino Blast-Off Game |


| Math <br> Lesson 2 <br> 30 minutes | Convert measurements in order to have consistent units for solving equivalent ratios. <br> Estimate area of rectangles (the size of Vietnamese Pigs). <br> Calculate area of rectangles (the size of Vietnamese Pigs). <br> Set up a ratio involving an unknown (x). <br> Use any strategy to solve for an equivalent ratio. | Discuss problem solving strategies with peers. Explain how to convert one unit of measure to another unit of measure. <br> Explain your personal problem solving strategy to peers. | Vocabulary <br> Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Teach several methods for finding equivalent ratios. | - 4-function calculator | - pencil and paper <br> - 3 ft x 1.25 ft paper |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up Lesson 2 $30-45 \text { minutes }$ | Create a rectangle that will have dimensions (length and width) and area representing Hogzilla. Set up a ratio involving an unknown ( $x$ ). Use any strategy to solve equivalent ratios. <br> Make estimates and measurements to compare Hogzilla's area with the area of another object. | Discuss problem solving strategies with peers. Explain problem solving strategies to peers. Talk about the size of Hogzilla and how it compares to the size of other objects. Write about the usefulness of equivalent ratios in comparing size of objects. | Continue the lesson, but using dimensions of Hogzilla, a monster pig, to help students understand how to set up and use ratios to solve problems. <br> Writing Prompt How did knowing about EQUIVALENT RATIOS help you solve today's follow-up problems? | - yard stick | - BLM Hogzilla <br> - BLM Recursive Review <br> - Problems (found in Lesson 1) <br> - $3 \mathrm{ft} x 12 \mathrm{ft}$ of butcher paper |
| Snack Fractions Lesson 2 | Use add., sub., mult. and div. to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems. | Students will work in pairs and explore fraction, decimal, and percent concepts through sharing trail mix. | - 1 large ice cream sandwich <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 1 plastic knife <br> - 2 pieces wax paper <br> - 2 pair of scissors All items listed above per partner pair | - BLM Trail Mix-Snack Fractions |

Grades 7-8
Zack Proton and the Wrong Planet
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson.

## Unit 2, Lesson 3

- 

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit 2 Lesson 3 Daily Routine $30-45$ minutes | Solve word problems using a variety of strategies and defend their strategies. Model and solve 2-step word problems. <br> Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 100 <br> - Graphing <br> - Money Matters | - Set of 5 fruits or vegetables per group of 4 students. (Ex: 5 turnips of differing sizes.) | - BLM Solve It! Partner \#1-Problem 4 1 per pair <br> - BLM Solve It! Partner \#2-Problem 5 1 per pair <br> - BLM Fraction Action and $X$ Marks the Spot 1 per student <br> - tape measure <br> - chart paper <br> - grid paper <br> - markers <br> - 4 function calculator <br> - BLM Percent Increase in Size-Measurement Lab Record Sheet |
| Classroom Lesson 3 <br> $1-1.5$ hours | Share dimensional measurements of objects with peers. Use any strategy to find equivalent ratios. | Discuss and share vocabulary word associations with peers. Tell classmates your favorite part of Zack Proton and the Wrong Planet. <br> Read and listen to Zack Proton and the Wrong Planet. Name equivalent ratios in the domino game. | Vocabulary Create a Word Association chart for two of the vocabulary words. <br> Literature <br> Listen to the rest of the book, commenting on favorite parts of the book. <br> Transition to Math Play Domino Blast-Off |  | - BLM Lesson 2, 3 Word Association Charts <br> - Domino Blast-Off Game |


| Math <br> Lesson 3 <br> 30 minutes | Measure and record the dimensions of a child-sized T-shirt. <br> Set up equivalent ratios involving an unknown $x$. Work with peers to solve equivalent ratios using any strategy. <br> Draw a proportional object on graph paper using appropriate units (or values). | Discuss strategies to set up equivalent ratios involving an unknown $x$. <br> Explain problem solving strategies to peers. <br> Write measurements with appropriate units. <br> Talk about and compare the size (dimensions) of different objects. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Find measures of shrunken spacesuit based on ratio of child's size 6 jump suit. | - customary ruler (inches) <br> - tape measures <br> - 4-function calculator | - BLM Omega Chimp Suit Measurements 1 per student <br> - BLM "My 6-inch Spacesuit" 1 per student <br> - pencil and paper <br> - inch-grid paper <br> - Child’s size 6 jump suit, long sleeves and long legs ( 1 for teacher to use as model) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up Lesson 3 $30-45 \text { minutes }$ | Measure and record the dimensions of a child-sized T-shirt. <br> Set up equivalent ratios involving an unknown $x$. Work with peers to solve equivalent ratios using any strategy. <br> Draw a proportional object on graph paper using appropriate units (or values). | Discuss problem solving strategies with peers. Explain our problem solving strategy to peers. <br> Talk about the size of their suit and how it compares to the size of their peers. Write about the usefulness of equivalent ratios in comparing size of objects. | Continue the lesson, circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt How did knowing about EQUIVALENT RATIOS help you solve today's follow-up problems? | - customary ruler (inches) <br> - 4-function calculator | - BLM "My 6-inch Spacesuit" <br> - pencil and paper <br> - inch-grid paper <br> - tape measures |


| Snack Fractions Lesson 3 | Use add., sub., mult. and div. to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems. | Students will work in pairs and explore fraction, decimal, and percent concepts working with recipe measurements. | - 1 cup cherry tomatoes <br> - 1 cup cheese cubes <br> - 2 half-cup measuring cups <br> - 2 paper dessert plates <br> - 2 paper towels <br> - copy of grocery receipt for this snack purchase <br> All items listed above per partner pair | - BLM Tomatoes and Cheese-Snack Fractions |
| :---: | :---: | :---: | :---: | :---: | :---: |

## Project SMART/Math MATTERS 2014

| Grade Level: 7-8 | Unit $2 /$ Lessons $1-2-3$ |
| :---: | :---: |

## Daily Routine Math Objectives:

Model and solve situational problems with fractions using pictures, numbers and words.
Measure to find surface area of rectangular prisms and cylinders.
Measure circumference of 3-D, compare and find percent of increase and decrease.
Solve situation problems involving whole numbers in all operations.
Solve for X.

## Daily Routine Language Objectives:

Listen, read, speak, and write the problem.
Listen to, read, speak and write about measurement vocabulary.
Speak to partners, teacher, and class using vocabulary introduced in the Daily Routines.

## Unit Math Objectives:

Connect ratio to multiplication by observing and finding patterns within an equivalent ratios chart.
Solve single and multi-step problems involving ratios and equivalent ratios.
Find area using arrays and the area formula.
Compare equivalent ratios, areas, and sizes of different objects using visualization, estimation, patterns and cross multiplication.
Use grid paper to measure dimensions of objects.
Choose strategies to solve problems including comparing areas, sizes and equivalent ratios.
Convert measurements into different units.
Set up ratios involving an unknown (x).
Create a rectangle that has dimensions similar to an object.

## Unit Language Objectives:

Discuss problem solving strategies with peers.
Explain problem solving strategies with peers.
Describe construction to peers.
Discuss outer space with peers.
Write about your knowledge of equivalent ratios.
Read word problems.
Write out solutions for solving equivalent ratio problems.
Speak to peers using math and literature vocabulary words.
Explain how to use a multiplication chart to find equivalent ratios.
Discuss and share vocabulary word associations with peers.
Read and listen to Zack Proton and the Wrong Planet.
Tell classmates your favorite part of Zack Proton and the Wrong Planet.
Explain how to convert one unit of measure to another unit of measure.
Talk about and compare the size of objects
Write about the usefulness of equivalent ratios in comparing the size of objects.

## Technology Objectives:

Use research skills and electronic communication, with appropriate supervision, to create new knowledge.

## Vocabulary

Math: ratio, equivalent, rate, unit rate
Language: construction, volume, defective, expensive, impossible

## Resources/Literacy Links <br> Zack Proton and the Wrong Planet by Brian Anderson

## Lesson Sequence

- Daily Routine: 30-45 minutes
- Classroom Lesson: 30 minutes -1 hour
- Math Lesson: 30 minutes
- Classroom Follow-up including Independent Writing: 30 minutes - 1 hour


## Enrichment Activities - These are BEYOND EXPECTATION

## Math Extensions:

Graph: Birthday graphing idea
Math Walk: Find and measure a large area on campus, then calculate the Hogzillas it would take to cover the area.
Graphing Experiences: http://fcit.usf.edu/math/lessons/lessons8.html
Extensions to Ratio Problems: http://math.rice.edu/~lanius/proportions/
Strand Extensions:
Social Studies: People live for extended periods on the International Space Station. Investigate how life would be different on the space station than it would be living with your family.
http://www.nasa.gov/mission_pages/station/main/index.html one of hundreds of sites
Science: What are some of the modern conveniences that have been invented because of space travel?
http://www.cnn.com/2007/LIVING/worklife/10/04/nasa.everyday/index.html Inventions you probably use.
http://www.space.com/news/horack_visions_991119.html scholarly on communications
http://www.nasa.gov/centers/glenn/research/warp/inspinv.html expanding space travel
Art: Create a pig piñata. Save it for the last week Family Gathering!
http://www.kidspoint.org/columns2.asp?column_id=650\&column_type=kpfun
Writing Workshop: Write a realistic short story about space travel. Base your story on research you have done on space travel or the space station. http://www.hispanicheritage.org/about.php
Technology:
More Balanced Literacy: Check out this website:
http://t4.jordan.k12.ut.us/Balanced Literacy/reading_components.htm
Math Basic Fact Practice: Other Subject Integration
Family Math: http://illuminations.nctm.org/swr/review.asp?SWR=439
Article from PBS on starting a Family Math Night:
http://www.pbs.org/teachersource/whats new/math/tips0899.shtm
Google Earth - Use Google Earth to find Ricardo's neighborhood in San Antonio: http://earth.google.com/

Materials

- BLM Rectangular PrismMeasurement Lab Record Sheet
- BLM Solve It! Problems 1-2
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 1-3 CGI Zack Proton and the Wrong Planet


## Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 2-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.

Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

volume
construction
defective
expensive
impossible
ELPS (English Language
Proficiency Standards)
$2 \mathrm{E}, 2 \mathrm{~J}, 3 \mathrm{E}, 3 \mathrm{~F}, 3 \mathrm{~J}, 4 \mathrm{~F}, 4 \mathrm{~K}, 5 \mathrm{~B}, 5 \mathrm{G}$
TEKS for this Unit
$7^{\text {th }}-7.2, \mathrm{D} ; 7.3 \mathrm{~A}$;
$8^{\text {th }}-8.2 \mathrm{AB} ; 8.3 \mathrm{~B}, 8.5 \mathrm{~A}$

## Unit 2, Lesson 1 <br> Daily Routine

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab:

- Lesson 1 - Repeat Unit 1 Lesson 2, using a different set of boxes/rectangular prisms.
- Lesson 2 - Repeat Unit 1 Lesson 3, using a different set of cylinders.
- Lesson 3 - Percent of Increase in Size


## Lesson 1 Materials

- Cardboard boxes (easy to cut apart such as cereal, shirt, etc.)
- Scissors
- Plain paper / pencil
- 1" Grid paper
- Ruler


## Lesson 1 Student Groups

1) Cut apart faces of rectangular prism.
2) Find the approximate area of each face of the prism.
3) Label each part with the area, number and unit (such as 24 in $^{2}$ ).
4) Find the approximate surface area of the rectangular prism.
5) Write an explanation of how they found the surface area.

Solve It! Multi-step problem solving

- Lesson 1 - partners, related problems
- Lesson 2 - partners, 2-step problem
- Lesson 3 - partners, 2-step problem


## Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot


## $X$ Marks the Spot

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot

CGI

- Lesson 1 - rate, measurement division
- Lesson 2 - rate, multiplication (assessment item 7)
- Lesson 3 - price, partitive (assessment item 6)



# Unit 2 Lesson 1 - Daily Routines - Measurement Lab 

One per student

## Rectangular Prism - Measurement Lab Record Sheet

Students should work in small groups.

## Materials:

- Cardboard boxes (easy to cut apart such as cereal, shirt, etc.)
- Scissors
- Plain paper / pencil
- 1 " Grid paper
- Ruler

Task:

1) Find the approximate area of each of the rectangular prism faces.
2) Label each face with the area (number and unit - for example $24 \mathrm{in}^{2}$ ).
3) Find the surface area of the rectangular prism - that's the total area of all of the faces.
4) Draw rectangles below to represent the faces, labeling each with dimensions and area.
5) Write an explanation of how you found the surface area of the rectangular prism.

## Unidad 2 Lección 1 - Rutinas diarias - Laboratorio de medición

Prisma rectangular - Hoja de registro del laboratorio de medición
Los estudiantes deben trabajar en grupos pequeños.
Materiales:

- Cajas de cartón (fáciles de recortar, como cajas de cereales, etc.)
- Tijeras
- Papel y lápiz
- Papel con cuadrícula de 1 pulgada
- Regla

Tarea:
6) Encuentra el área aproximada de cada una de las caras del prisma rectangular.
7) Etiqueta cada cara con su área (número y unidad - por ejemplo, $24 \mathrm{in}^{2}$ ).
8) Encuentra el área de la superficie del prisma rectangular - es decir, el área total de todas sus caras.
9) Dibuja rectángulos debajo para representar las caras, etiquetando cada una con sus dimensiones y su área.
10) Escribe una explicación de cómo encontraste el área de superficie del prisma rectangular.

Unit 2 Lesson 1 - Daily Routines - Solve It! Problems (Pairs)
One per student

## Partner \#1 - Problem 1:

George and his brother, Justin, rode their bicycles to their summer jobs at the local carwash. George worked 8 hours last week and was paid $\$ 9.75$ an hour. How much income did he earn last week?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |
|  |  |
|  |  |

## Partner \#2 - Problem 2:

Justin made the same per hour, but was able to work 2.5 times as many hours as George last week. How much income did Justin earn last week?

- What do you need from Problem 1 to solve Problem 2?
- Be sure to verify the answer to Problem 1 before solving Problem 2.
- What is the answer to the question? Show your solution strategy.

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |
|  |  |

## Unit 2 Lesson 1 - Daily Routines - Solve It! Problems (Pairs)

One per student

## Compañero \# 1 - Problema 1:

George y su hermano, Justin, fueron en bicicleta hasta sus trabajos de verano, el lavadero de autos local. George trabajó 8 horas la semana pasada, y le pagaron $\$ 9.75$ por hora. ¿Cuánto ganó la semana pasada?

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |
|  |  |

## Compañero \# 2 - Problema 2:

Justin ganó lo mismo por hora, pero él pudo trabajar 2.5 veces más que George la semana pasada. ¿Cuánto ganó Justin la semana pasada?

- ¿Qué necesitas del problema 1 para resolver el problema 2?
- Asegúrate de verificar la respuesta del problema 1 antes de resolver el problema 2.
- ¿Cuál es la respuesta a la pregunta? Muestra tu estrategia de solución.

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |
|  |  |

Unit 2 Lesson 1 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materials: <br> None for this activity

## Task:

Lisa made $12 \frac{3}{4}$ pints of punch. She served $8 \frac{2}{3}$ cups. How much punch did she have left over?
$X$ Marks the Spot

| Solve for $x$ in these two equations. |  |
| :--- | :--- |
| $\mathbf{4 + \boldsymbol { x } - \mathbf { 7 } = \mathbf { 9 }}$ | $\mathbf{1 5 - 7 + \boldsymbol { x } = \mathbf { 2 3 }}$ |
|  |  |

Unit 2 Lesson 1 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materiales: <br> No

Tarea:
Lisa preparó $12 \frac{3}{4}$ pintas (pints) de ponche. Sirvio $8 \frac{2}{3}$ tazas. ¿Cuánto le sobró?

## $X$ Marca el sitio

| Resuelve para $x$ en estas dos ecuaciones. |  |
| :--- | :--- |
| $\mathbf{4 + \boldsymbol { x } - \mathbf { 7 } = \mathbf { 9 }}$ | $\mathbf{1 5}-\mathbf{7}+\boldsymbol{x}=\mathbf{2 3}$ |
|  |  |
|  |  |
|  |  |

Unit 2 Lesson 1-3 - Daily Routines - CGI Problems
One per student

## CGI - Zack Proton and the Wrong Planet

|  | Multiplication | Measurement Division | Partitive <br> Division |
| :---: | :---: | :---: | :---: |
| Grouping/ Partitioning | Omega Chimp ate half of his popcorn before the movie. If he had $21 / 2$ cups of popcorn to begin with, how much did he eat before the movie? | Omega Chimp has halfcup portions of popcorn to give away. If he has a total of $41 / 2$ cups of popcorn, how many of his friends can share equally in the popcorn? | Omega Chimp wants to share his popcorn among 3 of his friends. If he had $51 / 2$ cups of popcorn to share, what portion will each friend receive? |
| Rate | Effie batted ping pong balls at the rate of 15 balls in 2 minutes. At that rate, how many balls had Effie played in 2 hours? | Effie batted ping pong balls at the rate of 21 balls in 3 minutes. At that rate, how long did it take him to bat 7 balls? | Effie batted a total of 56 ping pong balls in 8 minutes. If he batted at a constant rate, how many balls a minute did he bat? |
| Price | The tailor for Bounceback Planet spent $\$ 79.85$ each on 100 costumes for the pigs. How much did he spend on the costumes? | The total cost for costumes for the Pig Opera was $\$ 3915$. If each costume cost $\$ 135$, how many costumes were made? | The total cost for the costumes for the Pig Opera was $\$ 2976$. If the tailor made costumes for 96 pigs, how much did each costume cost? |


|  | Multiplicación | División para medir | División partitiva |
| :---: | :---: | :---: | :---: |
|  | El mono Omega se comió la mitad de sus palomitas antes de la película. Si tenía 2 1/2 tazas de palomitas al principio, ¿cuántas palomitas se comió antes de la película? | El mono Omega tiene porciones de media taza de palomitas para regalar. Si tiene un total de $41 / 2$ tazas de palomitas, ¿con cuántos de sus amigos puede compartir sus palomitas en cantidades iguales? | El mono Omega quiere compartir sus palomitas con 3 de sus amigos. Si tenía 5 1/2 tazas de palomitas para compartir, ¿qué porción recibirá cada amigo? |
| $\begin{aligned} & \mathscr{F} \\ & \underset{\sim}{\boldsymbol{F}} \end{aligned}$ | Effy contestó pelotas de ping-pong a una tasa de 15 pelotas en 2 minutos. A esa tasa, ¿con cuántas pelotas había contestado Effy en 2 horas? | Effy contestó pelotas de ping-pong a una tasa de 21 pelotas en 3 minutos. A esa tasa, ¿cuánto tardó en contestar 7 pelotas? | Effy contestó un total de 56 pelotas de pingpong en 8 minutos. Si contestó las pelotas a una tasa constante, ¿cuántas pelotas contestó por minuto? |
|  | El sastre del planeta Bounceback gastó $\$ 79.85$ en cada uno de 100 disfraces para los cerdos. ¿Cuándo gastó en los disfraces? | El costo total de los disfraces para la Opera de los Cerdos fue $\$ 3,915$. Si cada disfraz costó $\$ 135$, ¿cuántos disfraces se hicieron? | El costo total para los disfraces de la Opera de los Cerdos fue de \$2,976. Si el sastre hizo disfraces para 96 cerdos, ¿cuánto costó cada disfraz? |

## Unit 2 Writing Workshop

> Genre: Feature Article
> Writing Objective: Students write a feature article about a science topic based on their research.
$>$ Organization of text:

- Feature article begins with an introductory paragraph that captures the reader's attention.
- Feature article has sections with headings that inform the reader about different aspects of the topic
- Written in a conversational style.
> Possible sequence of mini-lessons:

1. Brainstorm: In Lesson 1, students compare the science fiction genre (Zack Proton and the Wrong Planet) with a feature article about outer space (from National Geographic for Kids website). Students analyze what language and structure is used to write a feature article.

To launch this Writing Workshop, tell students that they will be writing their own feature article about outer space - something that could be published in a magazine like National Geographic. They will be researching their topic, and then sharing what they learn in the feature article.

Outer space is a really big topic, so they will need to choose a smaller topic about outer space. Give students an example: "life on a spaceship." As a class, brainstorm other ideas of what their feature articles could be about. A possible list could include:

- Life on a spaceship (eating, exercising, working)
- Spaceship commanders
- Astronaut's jobs in space
- Robots
- Animals in space

Students decide on a topic, and write it down in their notebook. You can have students brainstorm possible subtopics for their feature article at this time, writing each subtopic at the top of a separate piece of paper. This helps focus students' research to look for information about those specific subtopics. As they do their research, they can write down the information they find about each subtopic on its respective page. Conversely, students can decide what subtopics will be in their feature article (the different headings) as they do research, and record the information by subtopic on separate pieces of paper.

Provide time for students to research the topic on the internet. If you don't have access to enough computers, you may decide to print out ahead of time information from the internet and provide it for students to read. This will limit the topic they research, however, since you will be providing the reading materials.

Circulate while students are researching to help them record information by subtopic. You can also help students paraphrase so they don't copy chunks of text. One way to do this is to have students read the sentence(s) with the key information. Then, cover the text (or turn away from the computer screen) and explain what they learned in their own words. This is what they should write down. They can refer back to the text to refer to key words or data.
2. Draft: Model for students how to take their research and turn it into a feature article. First, model how you think of a catchy way to start the feature article. Often, they begin with a question posed to the reader. Then, show how you write a section for each subtopic, with a heading.

Provide time for students to write independently to draft their feature articles. Circulate to help students think of an interesting way to begin their feature articles, and to help them organize the writing into sections with headings. Continue to help students paraphrase information if you see that they have copied chunks of text from a source. This is a critical skill for middle school students to develop.
3. Revise: Based on the difficulties you observed students having during the drafting stage, model any of the following to help students improve their writing:

- beginning a feature article in an interesting way (such as with a question)
- paraphrasing
- organizing the feature article with subtopics (each with its own heading)
- elaborating the subtopics
- explaining the information in a conversational tone

4. Publish: If time permits, have students publish their feature articles on the last day. Students can share their feature articles with a partner, or with another class. You may want to consider mailing copies of the feature articles to a periodical such as National Geographic for Kids, to show students what authors do to try to get their writing published.

Materials

- Chart paper to make a list of science words
- Text excerpt for Read \& Retell activity written on chart paper, or projected on a SmartBoard.

Literature Selection Zack Proton and the Wrong Planet
by Brian Anderson
Math Vocabulary
ratio
equivalent
rate
unit rate
Literature Vocabulary
volume
construction
defective
expensive
impossible

DD Advertisement
Students could write an
advertisement for their "defective item," using words and ideas from their record sheets.

ELPS (English Language Proficiency Standards)
2C, 2J, 3B, 3J, 4F, 5B, 5G

## Unit 2, Lesson 1 Classroom Lesson <br> 

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

Math Objectives:

- Discuss and share length and width measurements of rectangles.
- Discuss and share area calculations using measurements.
- Discuss and share area calculations using arrays.
- Create a construction (model) using defective items.


## Reading Objectives

- Understand what science fiction is.
- Understand what a feature article is.


## Language Objectives:

- Recreate a science fiction excerpt using science vocabulary.
- Compare and contrast two genres related to science.


## BEFORE READING

## Building Background - Literature \& Vocabulary

- Show students the cover of Zack Proton and the Wrong Planet and read aloud the title. Explain that this unit's book is a chapter book, which they will be reading over the three days of the unit.
- Do they think this book is fiction or nonfiction? Why?
- Read the back cover paragraphs, which give a summary of the plot. Tell students that this is a special type of fiction called "science fiction." They may have heard it called "sci fi."


## Read \& Retell activity

This activity helps students examine the features of the science fiction genre, including the language that is typically used. Students are given the fun challenge of trying to recreate a text excerpt from Zack Proton and the Wrong Planet after reading it with the teacher and talking about what makes it science fiction. Comparing what they remember with the original helps draw students' attention again to the features of science fiction.
Teach a brief lesson on
alliteration. You could adapt
http://faculty.rcoe.appstate.edu/sm
$\frac{\text { thtw/RE } 3150 \mathrm{web} / \mathrm{Craft} \text { Minile }}{\text { ssons/RE } 3150 \mathrm{f} 03 / \mathrm{Amy} \text { Steelm }}$

| an_Alliterations.htm for the |
| :--- |
| lesson. |
| Begin an Alliteration Log today |
| so that as students hear an |
| alliteration during the reading, |
| they write it in the log. |

Bed Timeline
Begin a timeline of the events in
the story. Each time the story is
read during the unit, see if
students find more events to add
to the timeline.

## Technology Option

Author Brian Anderson will be reading one of the chapters of the book, possibly chapter 2 . You might want to use his rendition during this time.

## Unit 2, Lesson $1 \quad$ Grades 7-8 <br> Classroom Lesson - continued <br> 

1. Tell students that you are going to show them part of Chapter 1, and they will try to see what makes this book science fiction.
2. Before showing students the excerpt from Chapter 1, ask, "What scientific words do you think might be in the first part of this book?"
3. Have students briefly brainstorm with a partner, and then share with the class. Quickly jot down the words in a list on a piece of chart paper, on the board, or on a SmartBoard.
4. Display the text excerpt to students so they can see it (projected on a screen, written on chart paper). Tell students that they need to pay close attention to what you read, because you will then cover up this part of Chapter 1, and they will try to rewrite this science fiction text using as many words as they can remember.
5. Read aloud the text, while students follow along:

## Text Excerpt: Chapter 1

The news continued. "Planet Bounceback is now the proud owner of sixteen million pigs, delivered today from planet Pigfarm, more than half a universe away.
"Leapin' leptons!" Zack cried. "The Risky RasCal was carrying sixteen million pigs! We've got to get to planet Bounceback right away!"

Omega Chimp pulled a map out from his dashboard console. "According to this star Chart, Bounceback is only two stars away in the Gamma Triton system. We should be there in less than an hour."
6. When you finish reading the text excerpt aloud, ask, "Did you see any of the scientific words you predicted?"
7. Then, ask students: "What do you think makes this book science fiction?" Guide students to see that:


| Intermediate \& Advanced |
| :--- |
| ELLs: Benefit from listening to a |
| text repeatedly to develop fluency, |
| and reading along softly when |
| possible. Have students choose |
| their favorite page, and record |
| themselves reading it aloud using |
| a podcast. Then, they listen to that |
| particular page several times, |
| reading along softly. When they |
| feel they've had enough time to |
| practice, they record themselves |
| reading that page again. Have |
| students compare their two |
| recordings to see how their |
| fluency has improved. |


| Unit 2, Lesson 1 | Grades 7-8 |
| :--- | :---: |
| Classroom Lesson - continued | 620 |

9. Read aloud the text excerpt one more time, reminding students beforehand that they should pay close attention to the language the author used, because afterwards you will cover it up and they will try to recreate it.
10. Cover the text excerpt, and have students work for a couple of minutes with a partner to rewrite as much of the text as they remember.
11. Regroup the class, and display the text excerpt again. How does it compare to what they wrote? What language did they remember? What aspects of science fiction did they remember? (the fictional, futuristic characters, the outer space setting, words like planet, universe, stars, system, sixteen million, etc.)

Note: The expectation of Read \& Retell is NOT that students will be able to create an identical reproduction of the text excerpt. Instead, the goal is to draw students' attention to the type of language used in science fiction, and the features that are typical of this genre.

## DURING READING

Comprehensible Input - Literature \& Vocabulary
You will read chapters $1-5$ today, skipping the "comic" dream inserts which lose something in oral interpretation. If you are doing the timeline or story map activity, place the first one or two major events from the plot.

During the read aloud, the goal is to support students' comprehension of the text by modeling and practicing reading strategies:

- Craft and Structure: Genre
- Determining Word Meaning

This section indicates places in the text where you can:

- Briefly pause to model a reading strategy by thinking aloud.
- Briefly pause to have students practice a reading strategy by answering a question you pose.

Keep in mind that pausing the reading for too long at any of these places will make the reading very disconnected. This interferes with students' comprehension and enjoyment of the text, so keep the reading as fast-paced as possible.

You may want to mark the following stopping points in the text with sticky notes, indicating what you will say to students.

| Unit 2, Lesson 1 |
| :--- | :--- |
| Classroom Lesson - continued |
| Throughout the Reading: |
| Word play |
| There are many places where the author uses word play. It is very |
| difficult for ELLs to understand the humor behind word play, and can |
| also be challenging for English-proficient students depending on their |
| background knowledge. You will need to determine which word plays |
| are worth explaining to the class. Some can be easily explained, and |
| students can quickly understand the humor (such as "New Pork City", |
| instead of "New York City"). Others make reference to things that may |
| be far outside students' personal experiences, such as some literary |
| references ("UV or not UV" instead of "To be or not to be."). Decide |
| whether it is worth taking instructional time to fully explain some of |
| these references. |
| p. 10 Determining Word Meaning |
| $\bullet \quad$ Teacher Question: What does the word volume mean in this |
| sentence? |
| It says Omega Chimp was trying to "drown out" the ping pong |
| sound. What does that tell you about the volume? (He turned |
| the volume up a lot.) |




Unit 2 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## volume

## construction

## expensive

## impossible

Unit 2 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.


## defectuoso

## volumen

## construcción

## caro

imposible

| Materials <br> - Math Lesson vocabulary cards <br> - BLM Piggy Spaces cut-outs with border <br> - BLM Piggy Spaces-Practice Problems <br> - customary ruler <br> - tape (to tape down pigs) <br> - scissors | Unit 2, Lesson 1 Grades 7-8 |
| :---: | :---: |
|  | Math Lesson |
|  | Math Objectives: <br> - Use grid paper to measure length and width of rectangles. <br> - Calculate area of rectangles. <br> - Compare areas (equivalent ratios) using visual representations, patterns, and cross multiplication. |
| Math Vocabulary ratio equivalent rate unit rate | Language Objectives: <br> - Discuss strategies to determine areas and equivalent ratios. <br> - Explain personal strategies used to find equivalent ratios. |
|  | Building Background |
| Literature Vocabulary <br> volume <br> construction <br> defective <br> expensive <br> impossible | The Vietnamese (Pot-bellied) Pigs are a dwarf swine breed which was developed in the 1960s. They were originally brought into Sweden and Canada and have since moved into a number of countries. Full grown potbellied pigs weigh an average of $70-150 \mathrm{lbs}$. with some reaching 200 lbs . or more; they average 3 ft . long and 15 " tall. Full growth is not reached until about 5 years of age. |
|  | Comprehensible Input <br> How many pigs were dropped off on Bounceback Planet? (16 million) How much room would that many pigs need? Could a planet hold that many pigs? How much area would they cover? You are going to answer these questions over the next two days by starting with a simpler problem. |
| ELPS (English Language Proficiency Standards) 2C, 2E, 2F, 2J, 3E, 3J, 4F | Show the students the pig cut out in the rectangle (one pig only, but leave the border around it so they are working with a rectangle that has a picture of a pig). |
|  | Obviously, this is a two-dimensional representation of a pig. What measurements can we take on this pig? (length and height) What measurements can't we take? (width and weight) That's OK, we'll see how much area this pig would cover if it were lying down flat on the ground. (Measure the picture - it should be one-inch tall and two-inches long.) |
|  | You measured area this morning during your measurement lab. How much area does one of these pigs take up? (two square inches) |
|  | How much area would two of these pigs cover? (Pause, then take two pigs and lay them end to end, measure to see that it is one-inch tall and fourinches long.) It is four square inches. What if I arrange them in a different array, one above the other? (Do so, measure to see that this measures twoinches by two-inches and is still four square inches.) |



$\left.\begin{array}{|l|l|}\hline \text { Unit 2, Lesson 1 } \\ \text { Math Lesson - continued } \\ - \text { Eve---------------------------------------------------------- time you should have students identify what each number } \\ \text { represents - kids get lost in ratios because they forget that each number } \\ \text { represents something real; and that each ratio much compare in the same } \\ \text { way. } \\ \text { Be sure that you have time to finish 275 square units, even if you have to } \\ \text { omit some of the others. This one will not come out even, so kids will } \\ \text { have to decide what to do with the "half of a pig." } \\ \text { So how many pigs would it take to cover 275 square units? 137 - There } \\ \text { will be room to spare, but we have to drop the half of the pig. } \\ \text { Now, switch and find out how many square inches 275 pigs would cover. } \\ \text { 550 square inches - no leftovers here! } \\ \text { Students will be working their way up to larger numbers of pigs in the } \\ \text { classroom follow-up lesson. In Lesson 2 they will compare to the } \\ \text { measurements of the Vietnamese Pig, or Pot-bellied Pig. } \\ \text { MAS Space } \\ \text { You were asked to explain how the formula for finding area (lw) relates to } \\ \text { the area model on grid paper. Please compose a class explanation and } \\ \text { write our pirate so he will understand the concept and how the formula } \\ \text { works. } \\ \text { Objectives: } \\ \text { Read through the math and language objectives, making sure that students } \\ \text { understand how they accomplished each. }\end{array}\right\}$

Unit 2 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## ratio

## equivalent

## rate

## unit rate

Unit 2 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## razón

## equivalente

## tasa

## tasa de unidad

Unit 2 Lesson 1 - Math Lesson

Piggy Spaces


## Piggy Spaces - Practice Problems

How much area does one pig cover? $\qquad$
How do you know?


How much area would two pigs cover? $\qquad$
Does it matter how you arrange the pigs? Explain.

How much area would four pigs cover? $\qquad$
Does it matter how you arrange the pigs? Explain.

How much area would 16 pigs cover? Do not measure 16 pigs. Use ratio to determine the area.

How many pigs would it take to cover 20 square inches? Use ratio to determine the answer.

How many pigs would it take to cover 250 square inches? Use ratio to determine the answer.

How many pigs would it take to cover 275 square inches? Use ratio to determine the answer.

Unidad 2 - Zack Protón y el Planeta Equivocado
Lección 1 - Lección por TV
Hoja de espacio que ocupan los cerditos
¿Qué área cubre un cerdo? $\qquad$
¿Cómo lo sabes?

¿Qué área cubrirían dos cerdos? $\qquad$
¿Es importante la forma en que acomodes los cerdos? Explica.
¿Qué área cubrirían cuatro cerdos? $\qquad$
¿Es importante la forma en que acomodes los cerdos? Explica.
¿Qué área cubrirían 24 cerdos? No midas 24 cerdos. Usa una razón para determinar el área.
¿Cuántos cerdos se necesitarían para cubrir 12 pulgadas cuadradas? Usa una razón para determinar la respuesta.
¿Cuántos cerdos se necesitarían para cubrir 275 pulgadas cuadradas? Usa una razón para determinar la respuesta.

```
Materials
- BLM Piggy Spaces Record Sheet
- BLM Domino Blast Off Directions
- BLM Domino Blast Off Game Board
- BLM Multiplication ChartEquivalent Ratios
- dominoes ( 1 set for 4 students)
- dice (1 per 4 students)
- game markers
- BLM Recursive Review Problems Lessons 1-3
```


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

volume
construction
defective
expensive
impossible

ELPS (English Language Proficiency Standards)
2D, 2G, 2J, 3B, 3E, 3H, 4K, 5B, 5G

| Unit 2, Lesson 1 | Grades 7-8 |
| :--- | :---: |
| Follow-up | 630 |

Math Objectives:

- Choose a strategy to compare areas.
- Use equivalent ratios to solve problems.

Language Objectives:

- Discuss strategies used to determine areas and equivalent ratios with peers.
- Explain the strategy used to find equivalent ratios.
- Write about your knowledge of equivalent ratios.


## Practice and Application

The Classroom Teacher should repeat the same process with the students using the TV Teacher format. Use the Teacher's Guided Example for your script if you'd like. Students should have a copy of the Racing Ratio Example and the Racing Ratio Problems. Walk through the example with the students, then let them work comfortably in pairs or small groups to solve the other four problems.

## Recursive Review

We 're going to use this time to reflect on a skill we've learned in a previous lesson, to keep that skill current with more practice. Today, let's concentrate on unit rate. You may solve this any way you wish.
*Hint: you can set up equivalent ratios as a strategy.

- Alejandro bought 5 oranges for $\$ 1.25$. What did each orange cost?


## © Writing Topics

Independent Writing Topic
Students will have a daily writing activity which will incorporate the day's focus math vocabulary.

- What do I know about equivalent ratios?

End today by teaching Domino Ratio Blast Off Game which you can use in a center or as a filler activity as needed. This is an excellent practice for skills already learned.

## Objectives

Review the math and language objectives to make sure that they were accomplished and that the students realize how they were accomplished.

## Unit 2 Lesson 1 - Follow-up

## Piggy Spaces - Record Sheet

Use two strategies for finding EQUIVALENT RATIOS for the following problems. Notice that the ratios are different from those we worked with during the Math Lesson.


If 3 pigs cover 8 square inches, how many square inches would 57 pigs cover? Be sure to label your ratios so we know what each number represents.

If 9 pigs cover 27 square inches, how many pigs would it take to cover 81 square inches?

If 5 pigs cover 12 square inches, how many pigs would cover 81 square inches?

Lección 1 - Lección de seguimiento Hoja de registro de espacio que ocupan los cerditos


Usa 2 estrategias para encontrar RAZONES EQUIVALENTES para los siguientes problemas. Nota que las razones son diferentes a las que usamos durante la lección por TV.

Si 3 cerdos cubren 8 pulgadas cuadradas, ¿cuántas pulgadas cuadradas cubrirían 57 cerdos? Asegúrate de rotular tus razones para que sepamos qué representa cada número.

Si 9 cerdos cubren 27 pulgadas cuadradas, ¿cuántos cerdos se necesitarían para cubrir 81 pulgadas cuadradas?

Si 5 cerdos cubren 12 pulgadas cuadradas, ¿cuántos cerdos cubrirían 81 pulgadas cuadradas?

## Materials:

- 1 set of double 6 dominoes
- 1 six-sided die
- Game board
- Game markers (beans, sticks, stones, buttons, bottle caps -- anything around the house to keep players spot on the board)
- Suggested EQUIVALENT RATIO sheet


## Procedure:

- Place all of the dominoes face down in one layer on the floor or table so that everyone has access to them.
- Place the game board on the floor or table so that everyone has access to it.
- Each player puts his or her game piece in a different corner, or space station on the board.
- The object of the game is to be the first player to make an orbit around the game board and dock back at his or her own space station.

1. Play begins with Player number 1 drawing a domino from the pile. Player places the domino in a fraction format and announces what the ratio is. For example:


This domino could be used in either of the two ways below.


Ratio 1 to 3.
2. Player then gives an equivalent ratio for the one drawn. If the equivalent ratio is correct, Player rolls one die and moves that many spaces around the board. If the ratio is incorrect, Player does not move.
3. Play continues with the next person.
4. Winner is the first player to orbit the board and enter his or her space station.

Lección 1 - DIVERSIÓN FAMILIAR - Instrucciones de despegue, promedio de dominós

Materiales:

- 1 juego de 6 dominós dobles
- 1 dado de seis lados
- Tablero de juego
- Marcadores de juego (semillas, palitos, piedras, tapas de botella, cualquier cosa que tenga en su casa y que sirva para marcar el lugar de los jugadores en el tablero)
- Hoja sugerida de PROMEDIO EQUIVALENTE

Procedimiento:

- Coloque todos los dominós boca abajo en una capa sobre el piso o la mesa para que todos tengan acceso a los mismos.
- Coloque el juego sobre el piso o la mesa para que todos tengan acceso al mismo.
- Cada jugador coloca su pieza en una esquina diferente o estación espacial en el tablero.
- El objeto del juego es ser el primer jugador en completar una órbita alrededor del juego y regresar a su propia estación espacial.

El juego comienza con el Jugador número 1, quien toma un dominó de la pila. El jugador coloca el dominó en un formato de fracción y anuncia el promedio a usar. Por ejemplo,

se podría usar en cualquiera de las dos maneras a continuación.


Razón de 3 a 1.

El jugador de inmediato da un promedio equivalente para el dominó seleccionado. Si el promedio equivalente es correcto, el Jugador hace rodar 1 dado y se mueve alrededor del juego tantos espacios como los obtenidos. Si el promedio es incorrecto, el Jugador no se mueve.
El juego continúa con la siguiente persona.
El ganador es el primer jugador que completa una órbita alrededor del juego e ingresa a su estación espacial.

Domino Ratio Blast-Game Board


Domino Ratio Blast-Game Board


Domino Blast-Off Multiplication Chart - Equivalent Ratios

| X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 2 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 3 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| 4 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| 5 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| 6 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| 7 | 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| 8 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
| 9 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | 108 |
| 10 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| 11 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| 12 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |

Equivalent ratios for $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}$, and $\frac{8}{12}$ are already highlighted for you. These are just a few of the many equivalent ratios found on a multiplication chart. Their multiplier, or scale factor, is found in the same way you use this chart for multiplying. (Top row)

Example: $\frac{8}{12}$ multiplied by 3 will result in the equivalent ratio: $\frac{24}{36}$ noted by the arrow.
This handout may be used to assist you in finding equivalent ratios for the Domino BlastOff game.

## Recursive Review Problems

Solve the recursive review problems using any strategy of your choice.

## Unit 2 Lesson 1

Alejandro bought 5 oranges for $\$ 1.25$. What did each orange cost?

## Unit 2 Lesson 2

The average dandelion grows 6 inches tall and has a flower diameter of 2 inches. If a gigantic dandelion grew to 2 feet tall and was in proportion to the average, which ratio could be used to find the expected diameter of the flower?
A. $\frac{6}{2}=\frac{2}{x}$
B. $\frac{6}{2}=\frac{x}{2}$
C. $\frac{6}{2}=\frac{24}{x}$
D. $\frac{6}{2}=\frac{x}{24}$

## Unit 2 Lesson 3

Emilio caught three fish. Each fish was in proportion to the others. The second fish he caught measured 16 -inches long and weighed 6 pounds. The first fish he caught weighed 3 pounds. The last fish he caught was 10 -inches longer than the second fish he caught. What was the weight and length of each fish?

Recursive Review Problems
Solve the recursive review problems using any strategy of your choice.

## Unit 2 Lesson 1 <br> Alejandro compró 5 naranjas por \$1.25. ¿Cuánto costó cada naranja? <br> Puedes resolver esto de la forma que quieras.

## Unit 2 Lesson 2

El diente de león promedio crece 6 pulgadas de altura y su flor tiene una diámetro de 2 pulgadas. Si un diente de león gigante creció a 2 pies de alto y tenía las mismas proporciones que el diente de león promedio, ¿qué razón podría usarse para encontrar el diámetro esperado de la flor? (Pista: rotula cada parte de las siguientes razones para ver cuál ecuación representa la relación del problema.)
A. $\frac{6}{2}=\frac{2}{x}$
B. $\frac{6}{2}=\frac{x}{2}$
C. $\frac{6}{2}=\frac{24}{x}$
D. $\frac{6}{2}=\frac{x}{24}$

## Unit 2 Lesson 3

Emilio pescó tres peces. Los tres peces tenían proporciones iguales. El segundo pez que pescó medía 16 pulgadas de longitud y pesaba 6 libras. El primer pez que pescó pesaba 3 libras. El último pez que pescó medía 10 pulgadas más que el segundo pez. ¿Cuál era el peso y longitud de cada pez?

| Materials | Unit 2, Lesson 1 Grades 7-8 |
| :---: | :---: |
| - 6 carrots (small) | Snack Fractions |
| - 2 plastic spoons <br> - 2 paper dessert plates <br> - 2 paper towels | Students should wash their hands before this activity if using food items. |
| All items listed above per partner pair <br> - BLM Dip ‘n Veggies-Snack Fractions | Snack Fractions <br> Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack. |
| Math Objectives <br> - Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> - Convert between fractions, decimals, whole numbers and percents. <br> - Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). <br> - Estimate and find solutions to application problems involving percent. <br> Language Objectives <br> - Discuss fraction comparisons. <br> - Discuss fraction equivalencies. <br> - Adding and subtracting likedenominators. <br> Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate <br> Literature Vocabulary <br> volume <br> construction <br> defective <br> expensive <br> impossible | Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, extend: <br> QUESTIONS: <br> - How will you find the total yield of these ingredients? <br> - Explain how to find your fourth. <br> - How can proportion help you to increase the recipe to serve 10 ? <br> - Explain how you could mentally increase the recipe ingredients to serve 25 people once you know how much each would be for 10 people. <br> Finally, let them share the guacamole (or other dip) with a partner. <br> (Naturally, if you think the portions suggested in the materials list are too small for a middle schooler's snack, feel free to increase the amounts; make sure, though, that you make the amounts easily divided in halves - they've already done a great deal of work to get the snack.) <br> Snack Fraction Journal Writing: BLM Dip and Veggies Fractions Explain how you determined the amount of ingredients needed for 10 people. <br> Objectives: Review the objectives with the class, making sure they understand how they achieved each. |

## Unit 1 Lesson 1 - Snack Fraction



## Recipe for Perfect Guacamole

- 2 ripe avocados (about 2.25 cups)
- $1 / 2$ red onion, minced (about $1 / 2$ cup)
- 1-2 Serrano chiles, stems and seeds removed, minced
- 2 tablespoons cilantro (leaves and tender stems), finely chopped
- 1 tablespoon of fresh lime or lemon juice
- $1 / 2$ teaspoon coarse salt
- A dash of freshly grated black pepper
- $1 / 2$ ripe tomato, seeds and pulp removed, chopped (about $1 / 4$ cup)

Assuming that the lime juice, cilantro, salt, pepper and Serrano chiles together will add about $1 / 8$ cup to the dip, about how much guacamole will these ingredients yield?

If four of you are sharing the guacamole, what volume will you receive for your portion?

What is the ratio of avocados to ripe tomatoes?

Three of these avocados cost $\$ 5.36$. What would one avocado cost?

This recipe is recommended for not more than four people. What would the measures of each ingredient be if you wished to serve 10 people?

## Unidad 1 Lección 1 - Fracciones de refrigerios

Una por estudiante

## Receta para el guacamole perfecto

- 2 aguacates maduros (aproximadamente 2.25 tazas)
- $1 / 2$ cebolla roja, picada (aproximadamente $1 / 2$ taza)
- 1-2 chiles serranos, sin tallo ni semillas, picado
- 2 cucharadas de cilantro (hojas y tallos tiernos), picado finamente
- 1 cucharada de lima fresca o jugo de limón
- $1 / 2$ cucharada de sal gruesa
- Una pizca de pimienta negra recién molida
- $1 / 2$ tomate maduro, sin semillas ni pulpa, picado

Asumiendo que el jugo de lima, el cilantro, la sal, la pimienta y los chiles serranos en conjunto agregarán cerca de $1 / 8$ taza a la salsa, ¿aproximadamente cuánto guacamole se producirá con estos ingredientes?

Si comparten el guacamole entre cuatro, ¿qué volumen recibirás para tu porción?
¿Cuál es la relación de aguacates a tomates maduros?

Tres de estos aguacates cuestan $\$ 5.36$. ¿Cuánto costará un aguacate?

Esta receta no es recomendada para más de cuatro personas. ¿Cuáles serían las medidas de cada ingrediente si quisieras hacer esta receta para 10 personas?
$\qquad$ ,

We started reading Zack Proton and the Wrong Planet today.

Our math lesson used these ideas from the story...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
My teacher would like for us to:

Sincerely,

## Unit 2 Lesson 1 - Family Fun



Dear $\qquad$ ,

Empezamos a leer Zack Proton y el planeta equivodado hoy.

Utilizamos estas ideas del libro en nuestra lección de matemáticas hoy...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Mi maestro/a quiere que nosotros:

Atentamente,

## Materials

- BLM Cylinders-Measurement Lab Record Sheet
- BLM Solve It! Problems 3
- BLM Fraction Action and $X$ Marks the Spot
- Fraction Math Balance
- BLM Lessons 1-3 CGI Zack Proton and the Wrong Planet (listed in Lesson 1)


## Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 2-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

volume
construction
defective
expensive
impossible

ELPS (English Language
Proficiency Standards)
2E, 2J, 3E, 3F, 3J, 4F, 4K, 5B, 5G

Unit 2, Lesson 2
Grades 7-8
Daily Routine

## Cob

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - Repeat Unit 1 Lesson 2, using a different set of boxes/rectangular prisms.
- Lesson 2 - Repeat Unit 1 Lesson 3, using a different set of cylinders.
- Lesson 3 - Percent of Increase in Size

Lesson 2 Materials

- cylinders (easy to cut apart such as oatmeal boxes, toilet paper rolls, paper towel rolls, etc.)
- Scissors
- Plain paper / pencil
- 1" Grid paper
- Ruler

Lesson 2 Student Groups

1) Carefully cut cylinders apart using the ruler to make a straight line down the curved surface.
2) Find the approximate area of each part of the cylinder.
3) Label each part with the area, number, and unit (such as 24 in $^{2}$ ).
4) Find the approximate surface area of the cylinder.
5) Write an explanation of how they found the surface area. *Remind students that the area of a circle is $\pi\left(\mathrm{r}^{2}\right)$

Solve It! Multi-step problem solving

- Lesson 1 - partners, related problems
- Lesson 2 - partners, 2-step problem
- Lesson 3 - partners, 2-step problem


## Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot
$X$ Marks the Spot
- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot

|  | Unit 2, Lesson 2 Grades 7-8 <br> Daily Routine - continued 6.35 |
| :---: | :---: |
|  | CGI <br> - Lesson 1 - rate, measurement division <br> - Lesson 2 - rate, multiplication (assessment item 7) <br> - Lesson 3 - price, partitive (assessment item 6) |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
| Technology Option Practice measuring the surface area of a cylinder online at: http://www.aaamath.com | OPTIONAL <br> Target Number <br> - Lesson 1 - Target Number 48 <br> - Lesson 2 - Target Number 20 <br> - Lesson 3 - Target Number 100 <br> Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |
| Assessment Items <br> Students are introduced to and practice the skills necessary for success on the following assessment items: 1, 2, 3, 9 |  |
| TEKS for this Unit $\begin{aligned} & 7^{\text {th }}-7.2, \mathrm{D} ; 7.3 \mathrm{~A} ; \\ & 8^{\text {th }}-8.2 \mathrm{AB} ; 8.3 \mathrm{~B}, 8.5 \mathrm{~A} \end{aligned}$ |  |

## Unit 2 Lesson 2 - Daily Routines - Measurement Lab

One per student

## Cylinder - Measurement Lab Record Sheet

Students should work in small groups.
Materials:

- Cardboard cylinders (easy to cut apart such as cereal, shirt, etc.)
- Scissors
- Plain paper / pencil
- 1" Grid paper
- Ruler


## Task

1) Find the approximate area of each of the parts of the cylinder.
2) Label each face with the area (number and unit - for example $24 \mathrm{in}^{2}$ ).
3) Find the surface area of the cylinder - that's the total area of all of the faces.
4) Draw the parts below to represent the faces, labeling each with dimensions and area.

Write an explanation of how you found the surface area of the cylinder.

Unit 2 Lesson 2 - Daily Routines - Measurement Lab
One per student

## Cylindro - Laboratorio de medicion hoja de registro

Students should work in small groups.

## Materiales:

- Cilindro de carton (fáciles de recortar, como cajas de cereales, etc.)
- Tijeras
- Papel y lápiz
- Papel con cuadrícula de 1 pulgada
- Regla


## Tarea:

1) Encuentra el área aproximada de cada una de las caras del cilindro.
2) Etiqueta cada cara con su área (número y unidad - por ejemplo, $24 \mathrm{in}^{2}$ ).
3) Encuentra el área de la superficie del prisma rectangular - es decir, el área total de todas sus caras.
4) Dibuja rectángulos debajo para representar las caras, etiquetando cada una con sus dimensiones y su área.
5) Escribe una explicación de cómo encontraste el área de superficie del cilindro.

Unit 2 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)
One per student
Work with your partner to answer the question.

## Problem 3:

George's older friend, Michael, came to the carwash to have his father's car detailed. The "Clean" carwash cost $\$ 16.50$. The "Shiny" carwash cost $25 \%$ more than the "Clean," and the "Detail" carwash was 75\% more than the "Clean." If Michael purchased the "Detail," how much did he pay (excluding tax)?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 2 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)

One per student

Work with your partner to answer the question.

## Problema 3:

El amigo mayor de George, Michael, fue al lavadero de autos para que limpiaran
minuciosamente el auto de su padre. El lavado de autos "Limpio" cuesta \$16.50. El lavado de autos "Reluciente" cuesta un $25 \%$ más que el "Limpio" y el lavado de autos "Minucioso" cuesta un $75 \%$ más que el "Limpio." Si Michael compró el "Minucioso," ¿cuánto pagó (sin incluir impuestos)?

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |

Unit 2 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot

## Fraction Action

## Materials:

- Fraction Math Balance

Task:
Students work in groups today and use the fraction math balances to verify equivalencies of fractions for $\frac{3}{4}$. They must then write a description of how they could tell that the fractions they chose were or were NOT equivalent to $\frac{3}{4}$.

What percent of a whole pizza did they have left to put into the box?

## $X$ Marks the Spot

| Solve for $x$ in these two equations. | $\mathbf{9 x - 3}=\mathbf{1 0 5}$ |
| :--- | :--- |
| $\mathbf{7 x}=\mathbf{1 0 5}$ |  |
|  |  |

Unit 2 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot

## Fraction Action

## Materiales:

- Balance de matemáticas con fracciones

Tarea:
Hoy, los estudiantes trabajan en grupos y usan los balances de matemáticas con fracciones para verificar las equivalencias de fracciones para $\frac{3}{4}$. Luego, deben escribir una descripción de cómo pudieron saber que las fracciones que escogieron eran o NO eran equivalentes a $\frac{3}{4}$.
¿Qué porcentaje de una pizza entera han dejado para poner en la caja?

## $X$ Marca el sitio

| Resuelve para $x$ en estas dos ecuaciones. |  |
| :--- | :--- |
| $\mathbf{7 x}=\mathbf{1 0 5}$ | $\mathbf{9 x}-\mathbf{3}=\mathbf{1 0 5}$ |
|  |  |
|  |  |
|  |  |

## Materials <br> - Class set of literature selection <br> - BLM Lesson 2, 3 Word Association Charts <br> - Domino Blast-Off Game <br> Literature Selection Zack Proton and the Wrong Planet <br> by Brian Anderson

## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

volume
construction
defective
expensive
impossible
ELPS (English Language Proficiency Standards)
2C, 2J, 3B, 3J, 4F, 5B, 5G

## Technology Option

Students could create their word
association charts on the computer, as could the teacher.

## Unit 2, Lesson 2

## Classroom Lesson

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Observe and find patterns within an equivalent ratios chart.


## Reading Objective:

- Analyze the impact of alliteration on meaning and tone in a text.
- Understand characters by inferring what the author is really trying to say about them.


## Language Objectives:

- Use the literature vocabulary to create Visual-Verbal Word Associations and share them with peers.
- Identify alliterations in a text and create alliterations.
- Explain how to use a multiplication chart to find equivalent fractions.
- Discuss with peers the patterns within an equivalent ratios chart.


## BEFORE READING

## Building Background - Vocabulary

Ask students to retell their favorite part of the book so far with a partner. Make sure they are very specific and include details in their rendering. Circulate and listen in to different partnerships until their sharing is completed.

Regroup the class and tell students that to help them talk about what has happened so far to Zack Proton, you will help them practice how to use the new vocabulary words they have learned. They will use the VisualVerbal Word Association sheet to help internalize their understanding of the vocabulary. Give students three copies of the Word Association sheet.

## Comprehensible Input - Vocabulary

Visual-Verbal Word Association activity
Model and practice the process with students using one of the vocabulary words: volume.

| Mini-Unit Science <br> Fiction <br> Here is an interesting studentdeveloped mini-unit on science fiction which might be adaptable to this time in your studies. http://faculty.rcoe.appstate.edu/sm ithtw/RE 3150 web/Craft Minile ssons/Craft lessons.htm <br> Think and Write <br> Omega Chimp only eats bananas. If you could only eat one food, what would you want it to be? Write a paragraph describing the food and explain why that would be your choice. | Unit 2, Lesson 2 <br> Classroom Lesson - continued <br> - Box 1: <br> Model: Write the word volume on the record sheet in the top left rectangle and pronounce the word. <br> Practice: Students copy the word in their own graphic organizer. <br> - Box 2: <br> Model: Explain a definition for volume in your own words. Write this definition in the lower left hand rectangle. You may want to contrast this definition of volume with the mathematical meaning of the word (the volume of a 3-D figure). <br> Practice: Students copy this definition in their own graphic organizer. <br> - Box 3: <br> Model: Show students how you think of a personal relationship you have with the word by using it in a sentence. Write that sentence in the upper right hand rectangle. <br> Practice: Students talk with a partner to share their own sentence using the word. If students struggle to correctly use the word in a sentence, model another example or two for them to clarify the word's meaning and how to use it. Have students write their original sentence in their own graphic organizer. <br> ELLs: Beginning and early intermediate ELLs can write the sentence in their native language if necessary, or very closely model their sentence on the teacher's example. <br> - Box 4: <br> Model: Think aloud what a non-example could be for the word and write that in the lower right rectangle. For volume a nonexample could be silence. <br> Practice: Students copy this non-example in their own graphic organizer. <br> Practice and Application - Vocabulary <br> Visual-Verbal Word Association activity <br> Have students work with a partner to create a Visual-Verbal Word Association sheet for two words: <br> - construction <br> - defective <br> ELLs: While students work independently on this activity, you can meet with a small group of beginning and intermediate ELLs to create the four parts of the Visual-Verbal Word Association posters collaboratively. |
| :---: | :---: |


|  | Unit 2, Lesson 2 <br> Classroom Lesson - continued <br> For the "personal relationship" part, model how to use the word in a sentence, and write the sentence down so they can see it. Have your ELLs create a similar sentence based on your model. <br> Have students share with four other people in the room. Tell everyone to stand and on the word "TRAVEL," find someone to share their word associations with. After 30 seconds, teacher says "TRAVEL," and they each find someone new to share with. Repeat two more times until everyone has shared four times. <br> Charts should then go into the students' vocabulary journals. <br> Building Background - Literature Alliteration <br> The main focus for today's reading is to analyze the impact an author's use of alliteration has on the meaning and tone of the text. To introduce what alliteration is: <br> 1. Tell students that your favorite part so far was on page 21 when the characters beamed down to the planet and found themselves surrounded by thousands and thousands of pigs. Reread pages 2123 to students, to remind them about that part. <br> 2. Say, "I think the reason I like this part so much is because of the words the author used to describe what was happening in that moment: <br> - what a humongous herd of hogs <br> - what a sizeable swarm of swine <br> - what a seriously sickening stench <br> - hopped around like pesky pink popcorn <br> - Omega Chimp disappeared under a horde of hungry pigs" <br> 3. Explain: The author used the same sound at the beginning of these words. When an author chooses words so they all start with the same sound, it is called alliteration. Why do you think the author used alliteration in this part? <br> 4. Call on a few students to share their ideas with the class. Help them see that the alliteration really makes the reader pay attention to that part - it shows just how surprising the moment was for Zack and Omega Chimp. |
| :---: | :---: |



|  | Unit 2, Lesson 2 <br> Classroom Lesson - continued <br> Example of Alliteration Chart, filled in by the end of today's reading: <br> p. 50 Analyze Word Choice: Alliteration <br> "pace proudly in your pajamas past the pigs" <br> - Teacher Question: Why did the author use alliteration here? <br> - How does it change the tone? For example, does it make the text: <br> - more serious? <br> - more playful? <br> - more humorous? |
| :---: | :---: |




## Unit 2 Lessons 2, 3 - Classroom Lesson

30
Print multiple copies for students and have available for use at any time during the summer session.

Vocabulary Building: Visual-Verbal Word Association

| Vocabulary Term/Término de <br> vocabulario | Personal Association/Asociación <br> personal |
| :---: | :---: |
| Definition/Definición | Non-Example/No es ejemplo |
|  |  |


| Vocabulary Term/ Término de <br> vocabulario | Personal Association//Asociación <br> personal |
| :---: | :---: |
| Definition/Definición | Non-Example/No es ejemplo |
|  |  |


| Materials <br> - pencil and paper <br> - 4-function calculator | Unit 2, Lesson 2 Grades 7-8 <br> Math Lesson obis |
| :---: | :---: |
| Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate | Math Objectives: <br> - Convert measurements in order to have consistent units for solving equivalent ratios. <br> - Estimate area of rectangles (the size of Vietnamese Pigs). <br> - Calculate area of rectangles (the size of Vietnamese Pigs). <br> - Set up a ratio involving an unknown $(x)$. |
| Literature Vocabulary <br> volume <br> construction <br> defective <br> expensive <br> impossible | - Use any strategy to solve for an equivalent ratio. <br> Language Objectives: <br> - Discuss problem solving strategies with peers. <br> - Explain how to convert one unit of measure to another unit of measure. <br> - Explain your personal problem solving strategy to peers. |
| ELPS (English Language <br> Proficiency Standards) <br> 2D, 2G, 2J, 3B, 3E, 3H, 4K, 5B, <br> 5G | Building Background <br> In Lesson 1 we found the area that pig pictures measuring one-inch by two-inches would cover, and we used ratio to help us find not only the number of pigs that would cover a certain area; but also the area that a certain number of pigs would cover. <br> In today's lesson, we're going to talk about REAL pigs. I found the average dimensions of a small pig, the Vietnamese (Pot-bellied) Pig which are dwarf swine. We read the article in lesson 1, then used the paper $2 \times 1$ to visualize. Let's use the real pig measurements today. <br> Comprehensible Input <br> These pigs grow to about 3 feet long and 15 -inches tall. Suppose I wanted to find out how much area these pigs would cover if they were to lie down to take up the 3 feet long by 15 inches tall space? What would I have to do? Talk for a little about these two measures. Be careful, I'm being tricky! (Pause for a bit.) <br> First of all, look at our measurements - one of the measurements is in feet, the other is in inches. I need to convert either the feet to inches or the inches to feet so that I can find a common square unit. (Write all of this down, and speak slowly so students can follow your thinking.) <br> 1 foot $=12$-inches, <br> So, 3 feet $=3 \times 12$ or 36 -inches. <br> So this little pig is 3 feet or 36 -inches long. |





| Materials <br> - BLM Hogzilla <br> - $3 \mathrm{ft} x 12 \mathrm{ft}$ of butcher paper | Unit 2, Lesson 2 Grades 7-8 <br> Follow-up 690 |
| :---: | :---: |
| - BLM Recursive Review Lessons 1-3 <br> Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate | Math Objectives: <br> - Create a rectangle that will have dimensions (length and width) and area representing Hogzilla. <br> - Set up a ratio involving an unknown $(x)$. <br> - Use any strategy to solve equivalent ratios. <br> - Make estimates and measurements to compare Hogzilla's area with the area of another object. |
| Literature Vocabulary <br> volume <br> construction <br> defective <br> expensive <br> impossible | Language Objectives: <br> - Discuss problem solving strategies with peers. <br> - Explain problem solving strategies to peers. <br> - Talk about the size of Hogzilla and how it compares to the size of other objects. <br> - Write about the usefulness of equivalent ratios in comparing size of objects. |
| Technology Option Students might like to research Hogzilla to find out more facts about this amazing animal. <br> WARNING - It is a hunting | Hogzilla was an actual boar that was shot on a Georgia plantation in 2004. Although many measurements were given, none gave the height of the animal. Students will use the information on the BLM about this beast, as well as the proportions they have been using for the Vietnamese Pig, to calculate the area that 16 million Hogzillas would cover! |
| ELPS (English Language Proficiency Standards) 2D, 2G, 2J, 3B, 3E, 3H, 4K, 5B, 5G | Practice and Application <br> Once you are certain students understand the assignment, let them work. Circulate the room to ask question that clarify and probe. <br> QUESTIONS <br> - Explain how you are finding the EQUIVALENT RATIO. <br> - What did you visualize when you first looked at the problem to estimate a reasonable answer? <br> - Which method of solving for equivalent ratios do you prefer for these ratio problems? Why? <br> Recursive Review <br> BLM Recursive Review has answer choices. *Hint - label each part of the answer choice ratios to see which equation represents this situation. <br> - The average dandelion grows 6 inches tall and has a flower diameter of 2 inches. If a gigantic dandelion grew to 2 feet tall and was in proportion to the average, which ratio could be used to find the expected diameter of the flower? |


|  | Unit 2, Lesson 2 Grades 7-8 <br> Follow-up - continued 6is |
| :---: | :---: |
|  | Writing Topics <br> Independent Writing Topic <br> Students will have a daily writing activity which will incorporate the day's focus math vocabulary. <br> - Explain how knowing about equivalent ratios helped you solve today's Follow-up problems. <br> Objectives <br> Review the math and language objectives to make sure that they were accomplished and that the students realize how they were accomplished. |

Unit 2 Lesson 2 - Follow-up
One per student

## Hogzilla

Students will work in small groups to complete the activity.
Hogzilla was the name given to a monster boar killed in Georgia on a hunting plantation in 2004. The animal, according to eye witnesses, measured 12 feet long. They did not, however, give a height for the animal.

If we assume that this huge boar grew in the same proportions as the Vietnamese Pigs, you can use ratio and proportion to find the height of this gigantic boar.

## Task A:

1) Find an approximate height of Hogzilla, using the Vietnamese Pig measurements for your ratio.
2) Create a rectangle of paper that will represent the area Hogzilla would cover if lying down.

## Task B:

Choose one activity below to complete.
3) Determine how much area 16 million of these gigantic boars would cover.
4) Measure a very large area on the school property. How many Hogzillas, when lying down, would cover this area?

Unit 2 Lesson 2 - Follow-up
One per student

## Hogzilla

Students will work in small groups to complete the activity.
Hogzilla fue el nombre que le pusieron a un jabalí gigantesco que cazaron en un campo de caza en Georgia en 2004. De acuerdo con testigos, el animal medía 12 pies de largo. Nunca se dijo cuánto medía de altura el animal.

Si asumimos que este enorme jabalí tenía las mismas proporciones que los cerdos vietnamitas, puedes usar razones y proporciones para encontrar la altura de este gigantesco jabalí.

## Tarea A:

1. Encontrar una altura aproximada de Hogzilla usando las medidas del cerdo vietnamita para hacer una razón.
2. Crear un rectángulo de papel que representará el área que Hogzilla cubriría acostado

## Tarea B:

Escoge una actividad a continuación a completar.

1. Determinar qué área cubrirían 16 millones de estos jabalíes gigantescos.
2. Medir un área muy grande en los terrenos de la escuela. ¿Cuántos Hogzillas acostados cubrirían esta área?

## Materials

- 2 paper dessert plates
- 2 paper towels
- 1 plastic knife
- 2 pieces wax paper
- 2 pair of scissors
- 2 cups trail mix (pre-packaged or home-made)
All items listed above per partner pair
- BLM Trail Mix-Snack Fractions


## Math Objectives

- Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals.
- Convert between fractions, decimals, whole numbers and percents.
- Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios).
- Estimate and find solutions to application problems involving percent.


## Language Objectives

- Discuss how ratios and proportions can be used to solve real-world problems.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

volume
construction
defective
expensive
impossible

## Teacher Note

There is a difference in weight ounces and liquid volume ounces. One question on the BLM does differentiate the two measures.

## Unit 2, Lesson 2 <br> Snack Fractions <br> Grades 7-8 <br> 

Students should wash their hands before this activity if using food items.

## Snack Fractions

Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack.

The materials list states that students will be provided two cups of trail mix to share between partners. This measurement is NOT intended to be used for the Snack Fraction questionnaire. Students are to use the measurements given in the recipe on the BLM Trail Mix-Snack
Fractions. Simple home-made trail mix could be:
$1 / 2$ cup pecans
$1 / 2$ cup semi-sweet chocolate chips
1/2 cup granola
$1 / 2$ raisins
Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, extend:

## ?QUESTIONS:

- How will you find the total yield of these ingredients?
- Explain how to find your fourth.
- How can proportion help you to increase the recipe to serve 15 ?
- *This question talks about weight measure and volume measure. Tell me what you think this problem is explaining (that although 4 ounces liquid measure is half a cup, because dried fruit weighs more than water, 4 ounces of weight measure of dried fruit is less than half a cup - 1/3 cup in fact).
- If you were making this trail mix, what dried fruit would you use and in what proportions within the cup?

Finally, let them share the trail mix with a partner.
(Naturally, if you think the portions suggested in the materials list are too small for a middle schooler's snack, feel free to increase the amounts; make sure, though, that you make the amounts easily divided in halves - they've already done a great deal of work to get the snack.)

Snack Fraction Journal Writing: BLM Trail Mix Snack Fractions Explain how you determined the amount of ingredients needed for 10 people.

Objectives: Review the objectives with the class, making sure they understand how they achieved each.


## Recipe for Terrific Trail Mix

- 1 cup combination diced dried fruit such as prunes, apricots, pears and apples.
- $1 / 2$ cup raisins and/or dried cherries
- 1.5 cups unsalted sunflower seeds
- 1 cup unsalted dry-roasted peanuts

What percent of the one cup of dried diced fruit would you want each fruit to be?

If four of you are sharing this snack, what would the volume measure be for your portion?

Dried fruit is $\$ 3.59$ for a 4 ounce (weight measure) package. The weight measure of 4 ounces of dried fruit is about a third of a cup of liquid volume measure. What would the dried fruit cost for your portion? For the portion that all four people would share? For the entire class?

Increase the ingredient amounts to feed 12 people instead of the four for which this recipe is intended.

## Unidad 2 Lección 2 - Fracciones de refrigerios

Una por estudiante

## Granola - Fracciones de refrigerios

## Receta para una increíble granola

- 1 taza combinada de frutas secas cortadas en dados, tales como ciruelas pasas, albaricoques, peras y manzanas.
- $1 / 2$ taza de uvas pasas o cerezas secas
- 1,5 taza de semillas de girasol sin sal
- 1 taza de cacahuetes tostados sin sal
¿Qué porcentaje de la taza de frutas secas cortadas en cubos desearías que fuese cada fruta?

Si comparten este refrigerio entre cuatro, ¿cuál sería la medida de volumen para tu porción?

La fruta seca cuesta $\$ 3.59$ por un paquete de 4 onzas (medida de peso). La medida de peso de 4 onzas de frutas secas es aproximadamente un tercio de una taza de la medida de volumen del líquido. ¿Cuánto costaría la fruta seca para tu porción? ¿Para la porción que las cuatro personas compartirían? ¿Para toda la clase?

Aumenta la cantidad de ingredientes para alimentar a 12 personas en vez de alimentar a las cuatro para las que esta receta está pensada.
$\qquad$ ,

We continued reading Zack Proton and the Wrong Planet today.

My favorite math activity today was...
because...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

My teacher would like for us to:

- Find a stuffed animal (dimensions of length and width) and use equivalent ratios to determine how big its real-life counterpart might be.

Sincerely,
$\qquad$
Hoy continuamos con la lectura de Zack Proton y el planeta equivocado hoy.

Mi actividad de matemáticas favorita fue...
$\qquad$ porque...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
A mi maestro/a le gustaría que nosotros:

- Encontrar un animal de peluche (dimensiones de longitud y anchura) y usar las razones equivalentes para determinar lo grande sería si fuera real.

Atentamente,

Materials

- BLM Percent of Increase in Size-Measurement Lab Record Sheet
- BLM Percent of Increase in Size-Sample Story
- BLM Solve It! Problem 4-5
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 1-3 CGI Zack Proton and the Wrong Planet (listed in Lesson 1)


## Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 2-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

volume
construction
defective
expensive
impossible
ELPS (English Language Proficiency Standards)
2C, 2D, 2J, 3B, 3D, 3H, 4F, 4K, 5B, 5G

TEKS for this Unit
$7^{\text {th }}-7.2, \mathrm{D} ; 7.3 \mathrm{~A}$;
$8^{\text {th }}-8.2 \mathrm{AB} ; 8.3 \mathrm{~B}, 8.5 \mathrm{~A}$

Unit 2, Lesson 3
Grades 7-8
Daily Routine


The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab:

- Lesson 1 - Repeat Unit 1 Lesson 2, using a different set of boxes/rectangular prisms.
- Lesson 2 - Repeat Unit 1 Lesson 3, using a different set of cylinders.
- Lesson 3 - Percent of Increase in Size

Lesson 3 Materials

- set of five fruits or vegetables per group of four students (Ex: five oranges of differing sizes)
- tape measure
- chart paper
- grid paper
- markers
- 4-function calculator

Lesson 3 Student Groups

1) Order food items in any size sequence and measure circumference of each piece.
2) Calculate the percent increase or decrease between each piece.
3) Create a poster including: data table and graph
4) Present to class utilizing information to explain the growing process of the fruits/vegetables.
5) Write a creative story describing the food items change in size over time.

Solve It! Multi-step problem solving

- Lesson 1 - partners, related problems
- Lesson 2 - partners, 2-step problem
- Lesson 3 - partners, 2-step problem


## Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot
$X$ Marks the Spot
- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot

|  | Unit 2, Lesson 3 Grades 7-8 <br> Daily Routine - continued 6.85 |
| :---: | :---: |
|  | CGI <br> - Lesson 1 - rate, measurement division <br> - Lesson 2 - rate, multiplication (assessment item 7) <br> - Lesson 3 - price, partitive (assessment item 6) |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
| Technology Option Practice measuring the surface area of a cylinder online at: http://www.aaamath.com | OPTIONAL <br> Target Number <br> - Lesson 1 - Target Number 48 <br> - Lesson 2 - Target Number 20 <br> - Lesson 3 - Target Number 100 <br> Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |
| Assessment Items <br> Students are introduced to and practice the skills necessary for success on the following assessment items: 1, 2, 3, 9 |  |

Unit 2 Lesson 3 - Daily Routines - Measurement Lab
One per student

## Percent of Increase in Size - Measurement Lab Record Sheet

Students should work in small groups.
Materials:

- set of five fruits or vegetables per group of four students (Ex: five oranges of differing sizes)
- tape measure
- chart paper
- grid paper
- markers
- 4-function calculator


## Task:

1) Order food items in any size sequence and measure circumference of each piece.

piece \#5
2) Calculate the percent increase or decrease between each piece. Note whether it was an increase or decrease.
piece \#1 __0\%_ piece \#2
piece \#3 $\qquad$ piece \#4
piece \#5 $\qquad$
3) Create a poster including: data table and graph
4) Present to class utilizing information to explain the growing process of the fruits/vegetables.
5) Write a creative story describing the food items change in size over time. Use as many vocabulary terms as you can.

Unidad 2 Lección 3 - Rutinas diarias - Laboratorio de medición
Una por estudiante

## Porcentaje de aumento en tamaño - Hoja de registro del laboratorio de medición

Los estudiantes deben trabajar en grupos pequeños.

## Materiales:

- juego de 5 frutas o vegetales por grupo de 4 estudiantes. (Ejemplo: 5 naranjas de distintos tamaños).
- cinta métrica
- papel gráfico
- papel con cuadrícula
- marcadores
- calculadora de 4 funciones


## Tarea:

1) Ordena los alimentos en cualquier secuencia de tamaño y mide la circunferencia de cada pieza.
pieza.$^{\circ}{ }^{\circ} 1$ $\qquad$
pieza n. ${ }^{\circ} 3$ $\qquad$
pieza.$^{\circ}{ }^{\circ} 2$
pieza n. ${ }^{\circ} 4$
pieza n. ${ }^{\circ} 5$ $\qquad$
2) Calcula el porcentaje del aumento o de la disminución entre cada pieza. Anota si fue un aumento o una disminución.
pieza n. $^{\circ} 1$ $\qquad$ \% $\qquad$ pieza . $^{\circ}{ }^{2}$
pieza n. ${ }^{\circ} 3$ $\qquad$ pieza n. ${ }^{\circ} 4$ pieza n. ${ }^{\circ} 5$ $\qquad$
3) Crea un póster que incluya: tabla de datos y gráfico
4) Preséntalo ante la clase usando la información para explicar el proceso de crecimiento de las frutas/vegetales.
5) Escribe una historia creativa en la que describas el cambio del tamaño de los alimentos en el tiempo. Utiliza la mayor cantidad de términos del vocabulario posible.

Unit 2 Lesson 3 - Daily Routines - Measurement Lab
One teacher copy

## Percent of Increase in Size - Sample Story

Teacher: Read this to the class to inspire a creative story about their fruit or vegetable. Read before they start the Measurement Lab as it can help them determine their size sequence. Allow them to be as creative and detailed as they want. Have fun with this activity.

Measurement sequence 6in, 8in, 12in, 9in, 4in:

## The Life of Mr. Orange

This orange measuring 6 inches in circumference, is the first piece in our orange saga. The rain fell and the breezes blew, making the leaves twitch on the trees; and orange grew a little bigger to this 8 -inch circumference beauty. The sunshine sent its warm rays to ripen orange, and orange grew to this 12 -inch circumference beauty and was harvested. The worker pulled and tugged until the orange was yanked off the limb and fell into a wooden crate. Orange sat in a roadside stand for days and lost some of its plumpness, drying down to this 9 -inch circumference orange. Finally, all speckled with age, orange withered to only a 4 -inch circumference before it was heaved into the compost which was later fetched to fertilize the orange grove.

## La vida del Sr. Naranja

Esta naranja, cuya circunferencia mide 6 pulgadas, es la primera pieza en nuestra saga de naranjas. Cayó la lluvia y sopló la brisa, haciendo que las hojas se sacudieran en los árboles. Y la naranja creció un poco más, hasta alcanzar una belleza con una circunferencia de 8 pulgadas. La luz solar envió sus cálidos rayos e hizo que la naranja madurara, y la naranja creció hasta alcanzar una belleza con una circunferencia de 12 pulgadas, y luego fue cosechada. El trabajador jaló y tiró hasta arrancar la naranja de la rama de un tirón, y esta cayó en un cajón de madera. La naranja se sentó en un puesto al costado de la ruta durante días, y perdió algo de su corpulencia, secándose hasta convertirse en una naranja con una circunferencia de 9 pulgadas. Finalmente, toda manchada por la edad, se marchitó, y su circunferencia se redujo a solo 4 pulgadas antes de que se la arrojara como abono, lo que luego se utilizaba para fertilizar el huerto de naranjas.

## Unit 2 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per student
Solve your own problem today, showing your work. Verify your partner's problem solution when you both finish your own. Discuss your work.

## Partner \#1 - Problem 4:

The carwash was running a special for the week. If you paid the full price of $\$ 16.50$ for the "Clean" wash on one car, you would get $15 \%$ off the price of the "Shiny" wash for a second car. The regular price of the "Shiny" wash is $25 \%$ more than the "Clean." If a family brought in two cars, how much would they pay to have both cars washed using this special?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 2 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per student
Solve your own problem today, showing your work. Verify your partner's problem solution when you both finish your own. Discuss your work.

## Compañero \# 1 - Problema 4:

El lavadero de autos tenía una oferta especial para la semana. Si pagaras el precio total de $\$ 16.50$ por el lavado "Limpio" en un auto, obtendrías el $15 \%$ de descuento del precio del lavado "Reluciente" para un segundo auto. El precio normal del lavado "Reluciente" era un $25 \%$ más que el del "Limpio". Si una familia llevara dos autos, ¿cuánto pagarían para que les laven los dos autos usando esta oferta especial?

| Solución del problema <br> Nombre | Verificación de la solución <br> Nombre |
| :--- | :--- |
|  |  |

## Unit 2 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per pair

Solve your own problem today, showing your work. Verify your partner's problem solution when you both finish your own. Discuss your work.

## Partner \#2 - Problem 5:

Justin was buying chemicals for the car wash. Detailer's Waterless Auto Wash Concentrate was $\$ 18.99$ a bottle. The individual squirt bottle used by the employees was $\$ 14.99$. There was also a kit available that included the concentrate and the individual squirt bottle for $\$ 23.99$. Justin bought the kit. How much did he save buying the kit rather than the two items individually?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 2 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per pair
Hoy, resuelve tu propio problema, mostrando el procedimiento. Verifica la solución de tu compañero cuando ambos terminen de hacerlo por sí mismos. Hablen sobre su trabajo.

## Compañero \# 2 - Problema 5:

Justin estaba comprando productos químicos para el lavado del auto. La botella del Líquido concentrado para lavado de autos minucioso sin agua salía $\$ 18.99$. La botella rociadora individual que usaban los empleados salía $\$ 14.99$. Además, había un kit disponible que incluía el líquido concentrado y la botella rociadora individual por $\$ 23.99$. Justin compró el kit. ¿Cuánto ahorró comprando el kit en lugar de comprar los dos artículos por separado?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

Unit 2 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materials: <br> None for this activity

## Task:

Gary ate $\frac{3}{8}$ of a pizza for dinner, and then ate $\frac{1}{4}$ of the pizza the next day for lunch. What fractional part of the pizza was left after lunch?
$X$ Marks the Spot
Solve for $x$ in these two equations.

| $(7 x-5)-(4 x-3)=22$ | $(7 x-5)$  <br> $\frac{-(4 x-3)}{}$ $=22$ <br>   <br>   |
| :--- | :--- | :--- |

Unit 2 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materiales: <br> Ningunas

## Atrea;

Para la cena, Gary comió $\frac{3}{8}$ de una pizza, and luego comió $\frac{1}{4}$ de la pizza el almuerzo el día siguiente. ¿Qué parte fraccionaria de la pizza sobró después del almuerzo?
$X$ Marks the Spot

| Resolver para el valor de $x$ en estas dos ecuaciones. |  |
| :---: | :---: |
| $(7 x-5)-(4 x-3)=22$ | $\begin{array}{r} (7 x-5) \\ -(4 x-3) \\ =22 \end{array}$ |

## Literature Selection Zack Proton and the Wrong Planet <br> by Brian Anderson <br> CLASS SET

Materials

- BLM 2 Word Association Charts
- CLASSROOM set of literature books
- Bag or box of defective items such as: broken plastic ware, broken toys, broken sticks, flat balls, bottle corks, broken lids, small cylinders or prism with holes, etc. - anything that unless repaired could no longer be used for original purpose they are DEFECTIVE.
- Masking tape, glue, string
- Scraps of construction paper, wrapping paper, foil, plastic wrap, colorful cardboard
- Box or cylinder or jug
- Spools or other round items
- Markers or crayons
- Supplies for Domino Blast Off Game


## Literature Vocabulary

volume
construction
defective
expensive
impossible
Math Vocabulary
ratio
equivalent
rate
unit rate
ELPS (English Language Proficiency Standards)
2C, 2J, 3B, 3J, 4F, 5B, 5G

## Unit 2, Lesson 3 <br> Grades 7-8 Classroom Lesson

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Share dimensional measurements of objects with peers.
- Use any strategy to find equivalent ratios.


## Reading Objectives:

- Understand characters by inferring what the author is really trying to say about them.


## Language Objectives:

- Use literature vocabulary to create Visual-Verbal Word Associations and share with peers.
- Use literature vocabulary to discuss construction (model) with peers.
- Name equivalent ratios in the domino game.


## BEFORE READING

## Practice and Application - Vocabulary

Share their Hogzilla posters and their findings from the measurement lab.

Draw students' attention to the literature vocabulary. Are there any words that might be used in connection with Hogzilla? Use as many words as possible in creative sentences, fact or fiction, with regards to Hogzilla. (Examples: The construction crew worked for five days to build a pen big enough to hold Hogzilla. The volume of Hogzilla's "oink" was so loud; the people in the next town were kept awake at night. )

## Visual - Verbal Word Association Charts

Repeat Lesson 2's Visual-Verbal Word Association activity with the last two literature vocabulary words:

- expensive
- impossible.

Students should put their charts in their Journals for later reference.
When students are finished, have them share with four people in the room other than those they shared with in Lesson 2. Tell everyone to stand and on the word "TRAVEL," find someone to share their word associations with. After 30 seconds, teacher says "TRAVEL," and they each find someone new to share with. Repeat two more times until everyone has shared four times.

| Independent Reading |
| :--- |
| Connection |
| During independent reading, give |
| students the option of reading |
| Zack Proton and the Wrong |
| Planet, using copies from the set |
| of class books. |
| Students can reread any part of |
| the book, since you will have |
| finished reading it aloud today. |
| They can also read any of the |
| comic inserts that you skipped |
| during the read aloud. |

## Unit 2, Lesson 3 <br> Classroom Lesson - continued



## Building Background - Literature

Show students the Genre Chart created in Lesson 1. Remind them that science fiction typically takes place in the future, and the author imagines what the world would be like with science and technology.

Ask students if they think the world Zack Proton lives in will become reality for humans in the future. What aspects of science and technology from the book do they think will be part of our future? What things do they think are impossible? Students should refer to specific parts of the chapter book to support their idea (provide text evidence).

## DURING READING

Comprehensible Input - Literature \& Vocabulary
You will finish the book today, reading chapters $12-14$, skipping the "comic" dream inserts which lose something in oral interpretation. If you are doing the timeline or story map activity, place the first one or two major events from the plot.

During the read aloud, the goal is to support students' comprehension of the text by modeling and practicing reading strategies:

## - Analyzing Word Choice: Alliteration

- Inferring

This section indicates places in the text where you can:

- Briefly pause to model a reading strategy by thinking aloud.
- Briefly pause to have students practice a reading strategy by answering a question you pose.
Keep in mind that pausing the reading for too long at any of these places will make the reading very disconnected. This interferes with students' comprehension and enjoyment of the text, so keep the reading as fast-paced as possible.

You may want to mark the following stopping points in the text with sticky notes, indicating what you will say to students.

## p. 85 Word Choice: Alliteration

There is an example of alliteration on this page that you can add to the Alphabet Taxonomy chart from Lesson 2:
"panicked planet"
p. 95 Inferring

- Teacher Think Aloud: Here's another example of Zack saying he is heroic, when his actions clearly show that he is being foolish. Again, Omega Chimp is the one who has to get them out of trouble.


|  | Unit 2, Lesson 3 <br> Classroom Lesson - continued |
| :--- | :--- |
| Although students will make only one model, they are to describe the <br> features of two other models that could be offered. The models will <br> represent an EXPENSIVE model, standard model, and economy model. <br> What does "expensive" mean? Discuss before going on in the <br> assignment. <br> - Students must make a list of things that are possible for their <br> CONSTRUCTION to do; and things that are IMPOSSIBLE for the <br> CONSTRUCTION to do. What does "impossible" mean? Discuss <br> this before continuing the project. |  |
| Practice and Application - Vocabulary |  |
| Students are given 20-minutes to construct. They are then given a few |  |
| minutes to complete the record sheet. If time allows, share the |  |
| constructions now. Otherwise wait until the end of the day for the show |  |
| and tell. |  |

## Unit 2 Lessons 2, 3 - Classroom Lesson

30
Print multiple copies for students and have available for use at any time during the summer session.

Vocabulary Building: Visual-Verbal Word Association

| Vocabulary Term/Término de <br> vocabulario | Personal Association/Asociación <br> personal |
| :---: | :---: |
| Definition/Definición |  |
|  |  |


| Vocabulary Term/Término de <br> vocabulario | Personal Association/Asociación <br> personal |
| :---: | :---: |
| Definition/Definición |  |
|  |  |

## Materials

- Child's size 6 jump suit, long sleeves and long legs
- BLM Omega Chimp Suit Measurements
- customary ruler (inches)
- pencil and paper
- inch-grid paper
- tape measures
- 4-function calculator
- BLM "My 6-inch Spacesuit"


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

volume
construction
defective
expensive
impossible

## Teacher Note

Chimpanzee size information: http://www.kidsplanet.org/factshe ets/chimpanzee.html

Human size information: http://www.cdc.gov/nchs/data/nha nes/growthcharts/set2clinical/cj41 1071.pdf

ELPS (English Language Proficiency Standards)
2C, 2F, 2J, 3H, 3J, 4D, 4K, 5B, 5G

Unit 2, Lesson 3 Grades 7-8 Math Lesson

Math Objectives:

- Measure and record the dimensions of a child-sized T-shirt.
- Set up equivalent ratios involving an unknown $x$.
- Work with peers to solve equivalent ratios using any strategy.
- Draw a proportional object on graph paper using appropriate units (or values).


## Language Objectives:

- Discuss strategies to set up equivalent ratios involving an unknown $x$.
- Explain problem solving strategies to peers.
- Write measurements with appropriate units.
- Talk about and compare the size (dimensions) of different objects.


## Building Background

Chimpanzee - Standing approximately 4 feet tall high, males weigh between 90 and 120 pounds while females weigh between 60 and 110 pounds.

Unfortunately, the rays shrank the space suit to just one-inch tall. My question for you today is: what size are all of the other measures on the suit?

## Comprehensible Input

Enough about pigs, dwarf or giants!! Let's turn our attention to Omega Chimp today. Because Omega's only space suit was dirty and smelly after landing in the middle of the pigs on Bounceback Planet, Effie created a machine which would clean the suit with UV rays.

An adult chimpanzee is approximately 4 feet tall which is about the same size as an average 6 year old. In children's sizes, the average 6 year old would wear a size 6 . I don't have a spacesuit in size 6 , but $I$ do have a child's jump suit that size. The book didn't tell us all of the dimensions of the spacesuit, so we're going to use this child size 6 jump suit to find the other shrunken measures.

OK, what do we know about the shrunken suit? (It is one-inch high.) Let's assume that measure is from the bottom of the pant leg to the top of the shoulder - one-inch tall. What are some of the other measurements we'll need to know?

Students should follow along and participate in finding the new measurements using the BLM Omega Chimp Suit Measurements.

| Technology Option Students may use a 4 -function calculator to save time with calculations. | Unit 2, Lesson 3 Grades 7-8 <br> Math Lesson - continued 635 |
| :---: | :---: |
|  | Set up the ratio of the size 6 jump suit height to width. Then set up the shrunken suit's known height of one-inch to " $x$ " which will be the unknown width. |
|  | Talk through finding x by whichever method is most obviously the easiest to use. |
|  | Be sure that you ask what " $x$ " represents, and what each of the numbers in the ratios represent. It is important that students keep that understanding in their minds. |
|  | Now you have the height and the width of the shrunken suit. Find all of the other shrunken measures in the same fashion. |
|  | Tell students that they are going to help one another find their own measures using the BLM My 6-inch Space Suit. |
|  | Make sure they understand that the measurements are: |
|  | height - shoulder to ankle width - shoulder to shoulder arm length length of leg - waist to ankle |
|  | They are going to assume that Ellie's machine shrank their individual spacesuits to six-inches tall. Using their own measures, they are to set up ratios that would complete the measures of their shrunken spacesuits. They are then to use the one-inch grid paper and the measures of the shrunken suit to draw their shrunken suit. Decorate as a spacesuit and display. |
|  | MAS Space <br> Tell us what you measured in the Follow-up from Lesson 2 and how many Hogzillas it would take to cover that particular area. |
|  | After discussing the MAS Space activity tell them they are going to learn a game in the Follow-up Lesson that they can take home and play with their family. It is similar to the domino game they've been playing, but will be played on the Family Fun Game Board \#1they used at home during Unit 1. Show them the game board, dominoes, etc. |
|  | Objectives: <br> Read through the math and language objectives, making sure that students understand how they accomplished each. |

Unit 2 Lesson 3 - Math Lesson
6
One Teacher Transparency
One per student

## Omega Chimp's Suit Measurements

Work with your teacher and class to measure Omega Chimp's space suit and calculate (using ratios and proportions) what the shrunken suit measurements will be.

| Measures | Omega Chimp's Suit | Shrunken Suit |
| :---: | :---: | :---: |
| height |  | 1 inch |
| width |  |  |
| length of sleeve |  |  |
| neck opening |  |  |
| length of leg <br> from waist |  |  |

Unidad 2 Lección 3 - Lección de matemática
Una por estudiante

## ¡Mi traje espacial de 6 pulgadas!

¡Oh no! ¡Ellie ha encogido TU traje espacial junto con el del chimpancé Omega! Trabaja con un compañero para completar la actividad.

## Materiales:

- calculadora de 4 funciones
- cinta métrica
- papel con cuadrícula de una pulgada

Tarea:

1) Trabaja con un compañero para encontrar tus medidas personales.
2) Usa relaciones para encontrar las nuevas medidas de tu traje espacial encogido.
3) Usa papel con cuadrícula de una pulgada para bosquejar los resultados de tu nuevo traje espacial.
4) Decora el traje espacial y exhíbelo en la clase.

| Medidas | Medidas personales | Las medidas de tu traje espacial de <br> 6 pulgadas |
| :---: | :---: | :---: |
| altura | 1 pulgada |  |
| anchura |  |  |
| longitud de la <br> manga |  |  |
| abertura para el <br> cuello |  |  |
| longitud de la <br> pierna desde la <br> cintura |  |  |

Compara tu traje espacial encogido con los otros en la clase. ¿Qué notas? Explica por qué esto te sorprende o no.

| Materials <br> - customary ruler (inches) <br> - pencil and paper | Unit 2, Lesson 3 Grades 7-8 <br> Follow-up 6. |
| :---: | :---: |
| - tape measures <br> - 4-function calculator <br> - BLM "My 6-inch Spacesuit" <br> - BLM Recursive Review Problems (found in Lesson 1) | Math Objectives: <br> - Measure and record the dimensions of a child-sized T-shirt. <br> - Set up equivalent ratios involving an unknown $x$. <br> - Work with peers to solve equivalent ratios using any strategy. <br> - Draw a proportional object on graph paper using appropriate |
| Math Vocabulary ratio | units (or values). |
| equivalent rate unit rate | Language Objectives: <br> - Discuss problem solving strategies with peers. <br> - Explain our problem solving strategy to peers. |
| Literature Vocabulary <br> volume <br> construction <br> defective | - Talk about the size of their suit and how it compares to the size of their peers'. <br> - Write about the usefulness of equivalent ratios in comparing size of objects. |
| impossible | Practice and Application |
| ELPS (English Language <br> Proficiency Standards) <br> 2D, 2G, 2J, 3B, 3E, 3H, 4K, 5B, | Discuss the assignment with the students to make sure they understand what they are to do. Help students who are bashful about having others help them measure, and make sure the measurement is taken seriously. Ask students whether they think all of their suits will be the same dimensions - after all, they are all beginning with a height of six-inches. Accept all predictions. |
|  | As the students work through the assignment, circulate the room to encourage taking the problem seriously, and also to ask clarifying and probing questions. Once completed, students should display the assignment on the walls. |
|  | Facilitate a gallery walk. Listen to students as they discuss the various sizes. When the gallery walk is completed, ask students to tell you why the suits were different measures except for the heights. |
| Technology Option |  |
| Students may use a 4 -function calculator to save time with calculations. | - Explain how you are finding the EQUIVALENT RATIO. <br> - What did you visualize when you first looked at the problem to estimate a reasonable answer? <br> - Which method of solving for equivalent ratios do you prefer for these ratio problems? Why? |
|  | Recursive Review <br> - Emilio caught three fish. Each fish was in proportion to the others. The second fish he caught measured 16 -inches long and weighed 6 pounds. The first fish he caught weighed 3 pounds. The last fish he caught was 10 -inches longer than the second fish he caught. What was the weight and length of each fish? |

## Materials

- customary ruler (inches)
- pencil and paper
- inch-grid paper
- tape measures

位ction calculator

- BLM My 6-inch Spacesuit

Problems (found in Lesson 1)

## Math Vocabulary <br> ratio <br> equivalen <br> rate

Literature Vocabulary
volume
construction
defective
impossible

ELPS (English Language Proficiency Standards)
2D, 2G, 2J, 3B, 3E, 3H, 4K, 5B, 5G

## Technology Option

Students may use a 4-function calculator to save time with calculations.

Unit 2, Lesson 3
Follow-up
Math Objectives:

- Measure and record the dimensions of a child-sized T-shirt.
- Set up equivalent ratios involving an unknown $x$.
- Work with peers to solve equivalent ratios using any strategy.
- Draw a proportional object on graph paper using appropriate units (or values).


## Language Objectives:

- Discuss problem solving strategies with peers.
- Explain our problem solving strategy to peers.
- Talk about the size of their suit and how it compares to the size of their peers'.
- Write about the usefulness of equivalent ratios in comparing size of objects.


## Practice and Application

Discuss the assignment with the students to make sure they understand what they are to do. Help students who are bashful about having others help them measure, and make sure the measurement is taken seriously. Ask students whether they think all of their suits will be the same dimensions - after all, they are all beginning with a height of six-inches. Accept all predictions.

As the students work through the assignment, circulate the room to encourage taking the problem seriously, and also to ask clarifying and probing questions. Once completed, students should display the assignment on the walls.

Facilitate a gallery walk. Listen to students as they discuss the various sizes. When the gallery walk is completed, ask students to tell you why the suits were different measures except for the heights.

## QUESTIONS

- Explain how you are finding the EQUIVALENT RATIO.
- What did you visualize when you first looked at the problem to estimate a reasonable answer?
- Which method of solving for equivalent ratios do you prefer for these ratio problems? Why?


## Recursive Review

- Emilio caught three fish. Each fish was in proportion to the others. The second fish he caught measured 16 -inches long and weighed 6 pounds. The first fish he caught weighed 3 pounds. The last fish he caught was 10 -inches longer than the second fish he caught. What was the weight and length of each fish?



## Materials

- 1 cup cherry tomatoes
- 1 cup cheese cubes
- 2 half-cup measuring cups
- 2 paper dessert plates
- 2 paper towels
- copy of grocery receipt for this snack purchase
All items listed above per partner pair
- BLM Tomatoes and CheeseSnack Fractions - 1 per student


## Math Objectives

- Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals.
- Convert between fractions, decimals, whole numbers and percents.
- Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios).
- Estimate and find solutions to application problems involving percent.


## Language Objectives

- Discuss how ratios and proportions can be used to solve real-world problems.


## Math Vocabulary

ratio
equivalent
rate
unit rate

## Literature Vocabulary

volume
construction
defective
expensive
impossible

## Unit 2, Lesson 3 <br> Snack Fractions <br> Grades 7-8 <br> \%

Students should wash their hands before this activity if using food items.

## Snack Fractions

Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack.

Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, extend:

## QUESTIONS

- How will you find the total yield of these ingredients?
- Explain how to find your fourth.
- How can proportion help you to increase the recipe to serve 20?

Finally, let them share the tomatoes and cheese with a partner.
(Naturally, if you think the portions suggested in the materials list are too small for a middle schooler's snack, feel free to increase the amounts; make sure, though, that you make the amounts easily divided in halves - they've already done a great deal of work to get the snack.)

## Snack Fraction Journal Writing: BLM Tomatoes and Cheese Snack Fractions

Explain how you determined the amount of ingredients needed for 10 people.

Objectives: Review the objectives with the class, making sure they understand how they achieved each.

Unit 2 Lesson 3 - Snack Fraction
One per student

## Tomatoes and Cheese - Snack Fractions

## Recipe for Bruschetta with Tomato and Mozzarella

- 2 cups or 2 large tomatoes, chopped fine
- $1 / 2$ red onion, chopped fine
- 1/4 cup fresh basil, chopped
- 2 tablespoons balsamic vinegar
- 2 tablespoons capers
- 4 tablespoons extra virgin olive oil
- salt and pepper to taste

- 1 loaf, French baguette bread
- 2 ounces fresh mozzarella or buratta cheese

What is the proportion of mozzarella to tomatoes? ( 1 cup is 8 ounces; assume that the weight measure of cheese will approximate the volume measure of 2 ounces.)

If four of you are sharing this snack, what would the volume measure be for your portion? (There are 16 tablespoons in a cup.)

Increase the ingredient amounts to feed 20 people instead of the four for which this recipe is intended.

Using the grocery receipt for the purchase of the Tomato and Cheese snack for the class, what did your portion, shared with one other person, cost?

## Unidad 2 Lección 3 - Fracciones de refrigerios

## Tomates y queso - Fracciones de refrigerios

## Receta para bruschetta con tomate y mozzarella

- 2 tazas o 2 tomates grandes, picados finamente
- $1 / 2$ cebolla roja, picada finamente
- 1/4 taza de albahaca fresca, picada
- 2 cucharadas de vinagre balsámico
- 2 cucharadas de alcaparras
- 4 cucharadas de aceite de oliva extra virgen
- sal y pimienta a gusto
- 1 hogaza, baguette o pan francés
- 2 onzas de mozzarella fresca o queso burrata
¿Cuál es la proporción de mozzarella a tomates? ( 1 taza es 8 onzas; considera que la medida de peso de queso se aproximará a la medida de volumen de 2 onzas).

Si comparten este refrigerio entre cuatro, ¿cuál sería la medida de volumen para tu porción? (Hay 16 cucharadas en una taza).

Aumenta las cantidades de los ingredientes para alimentar a 20 personas en lugar de alimentar a las cuatro personas para las que esta receta está pensada.

Utilizando el recibo de la tienda de comestibles por la compra del refrigerio de tomate y queso para la clase, ¿cuánto costó tu porción, compartida con una persona más?

## Unit 2 Lesson 3 - Family Fun

Dear $\qquad$ ,

We learned a few more skills today using ratios and proportions!

Here are some strategies I'll need to solve the problems in this unit's game today...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Sincerely,

Querido/a $\qquad$ ,

Hoy aprendimos más habilidades usando las razones y proporciones.

Estas son algunas estrategias que necesito para resolver los problemas del juego de hoy...
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Atentamente,


| Problem Letter | Kinder | 1-2 | 3-4 | 5-6 | 7-8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 8 sounds | See Special instructions | $\begin{array}{ll} 7 \times 5=35 & 5 \times 7=35 \\ 35 \div 7=5 & 35 \div 5=7 \end{array}$ | 6 feet | 4.78 cm |
| B | 9 dances | See Special instructions | $\begin{array}{cc} 7 \times 6=42 & 6 \times 7=42 \\ 42 \div 6=7 & 42 \div 7=6 \end{array}$ | 5.75 cups dry (or fraction) | 550 cm |
| C | 2 people | See Special instructions | $-$ | 48 meters | 6 minutes |
| D | 6 people | 1 and 9 | 18 cookies | 2760.76 miles | 448 miles |
| E | 5 sounds | 7 and 3 | 6 cookies | \$73.22 | \$13.00 |
| F | 4 sounds | 8 and 2 | 8 boxes | 71.7 oz | 21 lbs of apples |
| G | Top train is longer | 1 child | 3 sets of 2 counters | \$45 | 588 miles |
| H | Top train is shorter | 29 children | 6 sets of 2 counters | \$29.37 | 20 lbs of potatoes |
| I | 3 cubes are fewer than 5 | 10 cents | Most common would be $2 / 8$, but any equivalent will do. | \$750 | 36 oz of chocolate |
| J | Nickel | 13 | 3.09 | \$550 | 24 oz toffee |
| K | Dime | 9 | 7.25 | \$67.44 | 15 baskets |
| L | Quarter | 14 | $47 / 10$ | \$12.60 | $4: 5=8: 10$ |
| M | penny | 6 cookies | 0.9 | no. ratios are not set up consistently | \$105.00 |
| N | 2 pennies | 3 miles | 0.7 | no. scale factor and constant of proportionality not present | 9 shirts |
| 0 | 8 pennies | 10 pennies | $2.5>2.05$ | 4 cupcakes | \$5.00 |
| P | 2 parts the same size | 3 pots | on the middle line | 24 hit target | 25 oranges |
| Q | 1 parts not the same size | 14 pounds | 0.9 | $\frac{11}{10}$ or an equivalent of | 1 hr 30 minutes |
| R | count to make sure there are 12 counters and use the number 12 | 1 group of 6 <br> 1 groups of 4 | Closest line to 1. | $1 \frac{1}{3}$ | 10.5 miles |




Units 2 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class

## Print on goldenrod paper.

## Family Fun - Problem Cards (1 of 2)

| A. <br> It is 478 cm from my desk to the <br> door. How many meters is it <br> from my desk to the door? | B. <br> There are 100 cm to 1 meter. <br> How many cm are there in 5.5 <br> meters? | C. <br> Angela can run 3.5 blocks in 2 <br> minutes. How long would it take <br> at that speed to run 10.5 blocks? |
| :--- | :--- | :--- |
| D. <br> Al's car can average 28 miles <br> per 1 gallon of gas. At that rate, <br> how far can Al drive on 16 <br> gallons of gas? | E. <br> Sonja's scooter goes 48 miles on <br> 1 gallon of gas. If a gallon of <br> gas costs $\$ 3.25$, how much will <br> it cost her to drive 192 miles? | F. <br> If it takes 6 pounds of apples to <br> make 4 apple pies, how many <br> pounds of apples would it take <br> to make 14 apple pies? |
| G. <br> Al's car can average 28 miles <br> per 1 gallon of gas. At that rate, <br> how far can Al drive on <br> 21gallons of gas? | H. <br> If it takes 8 pounds of potatoes <br> to make 6 shepherd's pies, how <br> many pounds of potatoes would <br> it take to make 15 shepherd's <br> pies? | I. <br> A recipe feeding 20 people calls <br> for 24 ounces of chocolate. How <br> much chocolate is needed to <br> make a recipe to feed 30 |
| people? |  |  |

## Unidad 2, Lección 3 - DIVERSIÓN FAMILIAR

Una por estudiante por hogar
Una por pareja de compañeros en clase

## Imprimir en papel vara de oro.

Diversión familiar - Cartas de problemas (1 de 2)
A.

Hay 478 cm desde mi escritorio hasta la puerta. ¿Cuántos metros hay desde mi escritorio hasta la puerta?
D.

El auto de Al puede hacer en promedio 28 millas por 1 galón de gas. A esa tasa, ¿cuánto puede conducir Al con 16 galones de gas?
G.

El auto de Al puede hacer en promedio 28 millas por 1 galón de gas. A esa tasa, ¿cuánto puede conducir Al con 21 galones de gas?
B.

Un metro tiene 100 cm .
¿Cuántos cm hay en 5.5 metros?
C.

Angela puede correr 3.5 manzanas en 2 minutos. ¿Cuánto tardará, a esa velocidad, en correr 10.5 manzanas?

## F.

Si se necesitan 6 libras de manzanas para hacer 4 pasteles de manzana, ¿cuántas libras de manzanas se necesitarán para hacer 14 pasteles de manzana?

## I.

Una receta que rinde para 20 personas lleva 24 onzas de chocolate. ¿Cuánto chocolate se necesita para hacer que la receta rinda para 30 personas?

Units 2 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class

## Print on goldenrod paper.

## Family Fun - Problem Cards (2 of 2)

| J. <br> A recipe feeding 24 people calls <br> for 16 ounces of toffee. How <br> much toffee is needed to make a <br> recipe to feed 36 people? | K. <br> If a player's free-throw average <br> is 6:10, how many baskets <br> would be expected from 25 <br> throws? | L. <br> If one player's free-throw <br> average is 4:5, and another's is <br> $8: 10$, which player has the better <br> average? |
| :--- | :--- | :--- |
| M. <br> T-shirts are on sale 3 for $\$ 15 . ~ A t ~$ | N. <br> That price, what would 21 t- <br> that price, how many shirts <br> could be bought with $\$ 45$ ? | O. <br> Oranges sell 5 for $\$ 1.25$. At that <br> price, what would 20 oranges <br> cost? |
|  |  | Q. |
| P. | Frankie can run 5 miles in 1 <br> hour. At that speed, how long <br> will it take her to run 7.5 miles? | R. <br> Justin can run 7 miles in 1 hour. <br> At that speed, how many miles <br> can he run in an hour and a half? |
| price, how many oranges could <br> be bought with $\$ 5$ ? |  |  |

## Unidad 2, Lección 3 - DIVERSIÓN FAMILIAR

| J. |
| :--- |
| Una receta que rinde para 24 |
| personas lleva 16 onzas de |
| caramelo. ¿Cuánto caramelo |
| se necesita para hacer que la |
| receta rinda para 36 |
| personas? |

K.

Si el promedio en tiros libres de un jugador es de 6:10, ¿cuántas canastas se esperarían de 25 tiros?

## M.

Las camisetas están en oferta de 3 por $\$ 15$. A ese precio, ¿cuánto costarían 21 camisetas?
P.

Se venden 5 naranjas por $\$ 1.25$. A ese precio, ¿cuántas naranjas se podrían comprar con $\$ 5$ ?
L.

Si el promedio en tiros libres de un jugador es $4: 5$ y el de otro es $8: 10$, ¿cuál jugador tiene el mejor promedio?
0.

Se venden 5 naranjas por $\$ 1.25$. A ese precio, ¿cuánto costarían 20 naranjas?

## R.

Justin puede correr 7 millas en 1 hora. A esa velocidad, ¿cuántas millas puede correr en una hora y media?

## Unit 2 Lesson 3 - FAMILY FUN

## Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions

## Materials:

- Family Fun Generic Game Board
- Family Fun Movement Cards
- Unit 2 Family Fun Problem Cards (green)
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 2 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions


## Solution Expectations

## Problems A-R

All of the problems are asking students to find equivalent ratios, but the situations are quite different. It is important for students to understand that even though the context of the problem situations vary between ratios of people and things, price, and rates, solving them is essentially the same.

The numbers chosen for these problems are compatible and shouldn't need laborious efforts to calculate. Simple number sense and relationships should allow students to calculate the answer mentally or with very little work.

## Example:

T-shirts are on sale 5 for $\$ 12$. At that price, what would 30 t-shirts cost?
Students need to keep track of their units/labels when writing the ratio in fraction form.

$$
\frac{5 \text { shirts }}{\$ 12}=\frac{30 \text { shirts }}{\$ x}
$$

Solution Strategy: I know to get from 5 shirts to 30 shirts I have to multiply by 6. In other words, I have 6 groups of 5 shirts. If each group of 5 shirts costs $\$ 12$, then 6 groups of $\$ 12$ will equal $\$ 72$. Basically, you take the ratio of 5:12 and multiply the numerator and denominator by 6 to find your answer.

## Unidad 2, Lección 3 - DIVERSIÓN FAMILIAR

## Instrucciones especiales de juego para $7^{0}-\mathbf{8}^{\mathbf{0}}$

## Materiales:

- Tablero de juego genérico de Diversión Familiar
- Cartas de movimiento de Diversión Familiar
- Cartas de problemas de Diversión Familiar de la Unidad 2 (verdes)
- Guía de respuestas de Diversión Familiar para la Unidad 1 (todos los grados)
- Instrucciones especiales de juego de Diversión Familiar Unidad 2 para $7^{\circ}-8^{\circ}$


## Expectativas de solución

## Problemas A-R

Todos los problemas piden a los estudiantes que encuentren relaciones equivalentes, pero las situaciones son muy diferentes. Es importante que los estudiantes entiendan que aun cuando el contexto de las situaciones de los problemas varíe entre relaciones de personas y cosas, precios y tasas, el modo de resolverlos es esencialmente el mismo.

Los números elegidos para estos problemas son compatibles y los cálculos no deben ser laboriosos. Un simple sentido de los números y las relaciones debe permitir a los estudiantes calcular la respuesta mentalmente o con muy poco trabajo.

## Ejemplo:

Las camisetas están en oferta de 5 por $\$ 12$. A ese precio, ¿cuánto costarían 30 camisetas?
Los estudiantes deben estar al tanto de sus unidades/etiquetas al escribir la relación en forma de fracción.

$$
\frac{5 \text { shirts }}{\$ 12}=\frac{30 \text { shirts }}{\$ x}
$$

Estrategia de Solución: Sé que para ir de 5 camisetas a 30 camisetas tengo que multiplicar por 6. En otras palabras, tengo 6 grupos de 5 camisetas. Si cada grupo de 5 camisetas cuesta $\$ 12$, entonces 6 grupos de $\$ 12$ equivaldrán a $\$ 72$. Básicamente, tomas la relación de 5:12 y multiplicas el numerador y el denominador por 6 para encontrar la respuesta.

Math Matters 2014 - In-Home Instruction

## Math Objectives <br> Math Lesson 1

- Use grid paper to measure length and width of rectangles
- Calculate area of rectangles
- Compare areas (equivalent ratios) using visual representations, patterns and cross multiplication for equivalent ratios.


## Math Lesson 3

- Write rates as ratios with proper labels.
- Compare rates with unit rates and serving costs.
- Use patterns to find equivalent ratios.
- Use cross multiplication to solve for an unknown.


## Differentiate

Math Lesson 1 - students use area to find proportional ratio using three different strategies (visual representations, patterns and relationships, cross multiplication).

Math Lesson 3 - students help each other find their own measurements per the handout, then find the ratio of their measurements to a jump suit 1 " tall.

## Materials

## Math Lesson 1

- Math Lesson vocabulary cards
- BLM Piggy Spaces cut-outs with border
- BLM Piggy Spaces-Practice Problems
- customary ruler
- tape (to tape down pigs)
- scissors


## Math Lesson 3

- Child's size 6 jump suit, long sleeves and long legs ( 1 for teacher to use as model)
- BLM Omega Chimp Suit Measurements
- customary ruler (inches)
- pencil and paper
- inch-grid paper
- tape measures
- 4-function calculator
- BLM "My 6-inch Spacesuit"


## Family Fun

- Family Fun Generic Game Board
- Family Fun Movement Cards
- Unit 2 Family Fun-Problem Cards
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 2 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions
- Game markers
- 4-function calculator


## Snack Fractions (Math Lesson 1)

- 1 cup guacamole or other dip
- 6 carrots (small)
- 2 half-cup measuring cups
- 2 plastic spoons
- 2 paper dessert plates
- 2 paper towels All items listed above per partner pair
- BLM Dip ' $n$ Veggies-Snack Fractions


## Snack Fraction Notice

All snack fractions are common throughout the grade bands. All grade bands have daily snack fraction activities provided. All snack fractions for a unit in a specific grade band will practice the same set of skills. Therefore, you may choose from any of the three activities. Lesson 1 has been suggested for this Unit in all grade bands for its ease of delivery.

## QUESTIONING

As a result of this lesson, your students should be able to respond to the following:

- What is a ratio?
- Explain one method for finding equivalent ratios
- Explain how visualization can help you find equivalent ratios.
- Which method of solving for equivalent ratios do you prefer? Why?
- Does the type of problem and the ratios involved make any difference in the type of strategy you would use? Explain.


## Math Vocabulary

ratio, equivalent, rate, unit rate

## CGI Problem

- rates
- prices


## Journal Writing

Explain what equivalent ratios are.

## Family Fun

A generic game board is being used in all grade levels, differentiated by game cards specific to the grade level.

## Snack Fractions

Students divide their snack into fourths, find ratios between ingredients, calculate cost per portion, and increase recipe to 10 servings.

## Assessment

Students will be introduced to and practice skills for items 1, 4, 5, 7 .
Grades 7-8
Overview

> 百

## Where the Sidewalk Ends

lesson plans for each lesson. NOTE: BLMs are per student unless otherwise indicated.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine 30-45 minutes | Solve word problems using a variety of strategies and defend their strategies. Model and solve 3-step word problems. Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 25 <br> - Graphing <br> - Money Matters (on MAS Space) | - ruler <br> - Money Kit: 1 dollar bill, 2 quarters, 3 dimes, 4 nickels, 5 pennies | - BLM Money LengthsMeasurement Lab Record Sheet <br> - plain white copy paper <br> - crayons <br> - BLM Solve It! Problems 1-3 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 1-3 CGI Where the Sidewalk Ends |
| Classroom <br> Lesson <br> 30 min. - 1 hour | Determine the comparison value of a set of coins based on diameter of coin rather than face value. Compare student-generated measurements. | Define words using context clues, then verify with dictionaries. <br> Recognize and use synonyms. Create a Synonym Story Poster. <br> Discuss the poet's purpose in writing the poem. | Vocabulary <br> Create synonym posters from vocabulary words. <br> Literature <br> Listen to another poem to better understand Shel Silverstein; listen to SMART for today's vocabulary and to compare to previous poem. <br> Transition to Math Continue working on Measurement Lab activity from Daily Routines. |  | - Vocabulary Synonym Story Sample Poster |
| Math Lesson 30 minutes | Find ratio of single coin value to a dollar. <br> Find fraction and decimal representation of single coin value out of a dollar. Find percent of coin value of a dollar. | Listen and follow directions. Verbalize strategies and justify your actions. | Vocabulary <br> Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). |  | - BLM Fractions, Decimals, Percents |


|  | Compare the amount the SMART son had to a dollar and find the percent of a dollar for each swap. Find the percent of money missing from the dollar for each swap. |  | Mathematics <br> Use what they found in the Daily Routine Measurement Lab to find percent of... |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up <br> Lesson <br> 30 min. - 1 hour (including Snack Fractions) | Find ratio of single coin value to a dollar. <br> Find fraction and decimal representation of single coin value out of a dollar. Find percent of coin value of a dollar. <br> Compare the amount the SMART son had to a dollar and find the percent of a dollar for each swap. Find the percent of money missing from the dollar for each swap. | Listen and follow directions. Verbalize strategies and justify your actions. Explain problem solving strategy to peers. Explain how finding unit rates can be helpful for you and your family. | Continue the lesson, modeling another problem before circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt <br> Explain why finding hundredths can be helpful in representing percents. |  | - BLM Recursive Review Problems Lessons 1-3 |
| Snack Fractions | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing dill pickles. | - 1 dill pickle <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 1 plastic knife All items listed above per partner pair | - BLM Dill Pickle-Snack Fractions |

Grades 7-8
Unit 3, Lesson 2
Where the Sidewalk Ends
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete
lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine 30-45 minutes | Solve word problems using a variety of strategies and defend their strategies. <br> Model and solve 3-step word problems. <br> Compose and decompose <br> values to show a new <br> representation of the value. <br> Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 50 <br> - Graphing <br> - Money Matters | - large box (at least 24 "x24"x18") <br> - assorted broken objects (enough to fill about $1 / 4$ of the box during the activity) <br> - tape measures | - BLM Collector's Box- <br> Measurement Lab Record Sheet <br> - BLM Solve It! Problem 3 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 1-3 CGI Where the Sidewalk Ends |
| Classroom <br> Lesson <br> 30 min. - 1 hour | Understand the concept of discounts. | Learn and use vocabulary words for this unit. Describe a collection. Write a paragraph about a real or imaginary collection. Listen to a reading and predict. <br> Read to understand the author's purpose in writing the poem. | Vocabulary <br> Continue building vocabulary through lesson. <br> Literature <br> Read to find the things the Collector might be able to repair and sell, if he wanted. <br> Transition to Math <br> Students discuss discounted prices and percentages in reference to the class collection box. |  | - BLM Store Circular 2 per student) |


| Math Lesson 30 minutes | Find the amount saved when you know the percent of discount and the retail price. <br> Find percent of discount when you know the retail price and sales price. Find sales price when you know the retail price and the percent of discount. Find the retail price when you know the percent of discount and the sales price. | Discuss the various ways to find discount. <br> Share ideas with students in your group. <br> Explain how to use the discount rectangle to solve discount problems. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Students learn how to utilize the bar model and formula for discounted percentages. | - 4-function calculator (optional) | - BLM Repaired Items for Sale Problems 1-4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up <br> Lesson <br> 30 min. - 1 hour (including Snack Fractions) | Find the amount saved when you know the percent of discount and the retail price. <br> Find percent of discount when you know the retail price and sales price. Find sales price when you know the retail price and the percent of discount. Find the retail price when you know the percent of discount and the sales price. | Discuss the various ways to find discount. <br> Share ideas with students in your group. <br> Explain how to use the rectangular bar model to solve discount problems. | Continue the lesson, modeling another problem before circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt Explain how the bar model helps you solve percent problems. | BLM Store Circular Problems 1-2 | - BLM Store Circular Problems 1-2 |
| Snack Fractions | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing veggies and dip. | - 2 paper dessert plates <br> - 2 paper towels <br> - cm ruler <br> - 6 pieces of beef jerky All items above per partner pair | - BLM Beef Jerky-Snack Fractions |

Grades 7-8
Overview
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine $30-45$ minutes | Solve word problems using a variety of strategies and defend their strategies. Model and solve 3-step word problems. Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 75 <br> - Graphing <br> - Money Matters |  | - BLM Solve It! Problem 4-5 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 1-3 CGI Where the Sidewalk Ends |
| Classroom <br> Lesson <br> 30 min . - 1 hour | Solve percent problems in a game format. | Reading Objectives: <br> - Compare fact and fiction. <br> - Infer the meaning of a poem and the author's purpose. <br> Language Objectives: <br> - Identify synonyms to increase vocabulary. <br> - Use different word wall words to talk about the literature you've read so far. | Vocabulary <br> Continue building vocabulary through lesson. <br> Literature <br> Read the poem and discuss the varying amounts paid. Discuss the author's purpose in writing a poem like this. <br> Transition to Math Students play Family Fun Game (omit cards involving finding tips). | - 4-function calculator | - Where the Sidewalk Ends (class set or copy of poem: "The Gypsies are Coming) <br> - Vocabulary cards <br> - Word Wall map <br> - Pictures of real gypsies http://photobucket.com/i mages/gypsies/ <br> - Family Fun Generic Game Board <br> - Family Fun Movement cards <br> - Unit 3 Family FunProblem Cards <br> - Family Fun Answer Key from Unit 1 (all grade bands) <br> - Unit 2 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions <br> - Game markers |


|  | Math Lesson 30 minutes | Calculate tips. | Discuss tipping and how to use percent to calculate tips. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Use money amounts in poem to calculate tips. | - 4-function calculators | - BLM Tipping to Save |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Follow-up <br> Lesson <br> 30 min. - 1 hour (including Snack Fractions) | Solve problems involving calculating tips. | Discuss problem solving strategies with peers. Explain your problem solving strategy to peers. | Continue the lesson, modeling another problem before circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt Explain how to calculate a tip. | - 4-function calculator | - Family Fun Generic Game Board <br> - Family Fun Movement cards <br> - Unit 3 Family FunProblem Cards <br> - Family Fun Answer Key from Unit 1 (all grade bands) <br> - Unit 3 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions <br> - Game markers <br> - BLM Recursive Review Problems Lessons 1-3 |
| $\stackrel{\text { ¢ }}{ }$ | Snack Fractions | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems. | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing veggies and dip. | - 2 pieces of raisin bread <br> - 1 banana <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 1 plastic knife All items above per partner pair | - BLM Raisin Bread and Bananas-Snack Fractions |

## Project SMART/Math MATTERS 2014

| Grade Level: 7-8 | Unit 3 / Lessons 1-2-3 |
| :---: | :---: |

## Daily Routine Math Objectives:

Measure to find length.
Solve multistep word problems
Solve situational problems involving fractions using pictures, numbers, and words.
Solve for $x$.
Practice basic facts.

## Daily Routine Language Objectives:

Listen, read, speak, and write the problem.
Listen to, read, speak and write about measurement vocabulary.
Speak to partners, teacher, and class using vocabulary introduced in the Daily Routines.

## Unit Math Objectives:

Find ratio of single coin value to a dollar.
Find fraction and decimal representation of single coin value out of a dollar.
Find percent of coin value of a dollar.
Compare the amount the SMART son had to a dollar and find the percent of a dollar for each swap.
Find the percent of money missing from the dollar for each swap.
Find the amount saved when you know the percent of discount and the retail price.
Find percent of discount when you know the retail price and sales price.
Find sales prices when you know the retail price and the percent of discount.
Find the retail price when you know the percent of discount and the sales price.
Calculate tip.

## Unit Language Objectives:

Discuss the various ways to find discount.
Share ideas with students in your groups.
Explain how to use the discount rectangle to solve discount problems.
Explain how to calculate tip.
Explain how to find "percent of."

## Technology Objectives:

Use research skills and electronic communication, with appropriate supervision, to create new knowledge.

```
Vocabulary
Math:
    ratio, equivalent, rate, unit rate, percent of, discount, tip
Language: swapped, traded, collector, gypsy, gypsies
```


## Resources/Literacy Links

"Smart," "Hector the Collector," "The Gypsies Are Coming" from Where the Sidewalk Ends
by Shel Silverstein

## Lesson Sequence

- Daily Routine: 30-45 minutes
- Classroom Lesson: 30 minutes - 1 hour
- Math Lesson: 30 minutes
- Classroom Follow-up including Independent Writing: 30 minutes - 1 hour


## Enrichment Activities - These are BEYOND EXPECTATION

## Math Extensions:

Math Walk: Looking for objects appropriate for Hector the Collector's box.
Interactive Game with decimals:
http://www.quia.com/rr/31090.html
http://www.gamequarium.com/decimals.html
http://www.decimalsquares.com/dsGames/
Simple to challenging games with decimals:
http://www.toonuniversity.com/flash.asp?err=198
Football theme decimals and fractions:
http://www.funbrain.com/football/
More graphing experiences: Many lesson plans, some appropriate for home use.
http://fcit.usf.edu/math/lessons/lessons8.html
Cool extension problems to the ratio unit:
http://math.rice.edu/~lanius/proportions/

## Strand Extensions:

- Social Studies: Research coins. Select one of the following questions and create a poem or poster to share your research. When did coins begin to be used? What civilization is credited for their beginning? How have coins in the USA changed since 1776 ? http://www.usmint.gov/kids/ http://www.livescience.com/2058-profound-history-coins.html http://www.ancienthistory.com/history.shtml
- Science: Did you know that there is a science to collecting? Check out the University of Oxford to find out about it. http://www.ox.ac.uk/media/science_blog/080610_1.html
- Art: Check out these cool artworks made from junk! Then make your own work of art from things others would throw away.
http://www.noupe.com/inspiration/40-terrific-works-of-art-made-from-common-trash.html


## Technology:

More Balanced Literacy:
http://t4.jordan.k12.ut.us/Balanced Literacy/reading_components.htm
Graphic organizers: http://instech.tusd.k12.az.us/balancedlit/handbook/BLMS/blgo.htm
Family Math: http://illuminations.nctm.org/swr/review.asp?SWR=439
Article from PBS on starting a Family Math Night:
http://www.pbs.org/teachersource/whats_new/math/tips0899.shtm
Parent Connection: Lists of games and activities for the family using a ball in a sock.
http://www.funattic.com/game flingsock.htm\#anchor349698

Materials

- BLM Money LengthsMeasurement Lab Record Sheet
- BLM Solve It! Problems 1-3
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 1-3 CGI Where the Sidewalk Ends


## Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 3-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.

Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies. Explain how they decided to rename the target number.

```
Math Vocabulary
ratio
equivalent
rate
unit rate
percent of
discount
tip
```

Literature Vocabulary
swapped
traded
collector
gypsy
gypsies

ELPS (English Language
Proficiency Standards - TX) 2C, 2D, 2E, 2I, 3D, 3E, 4F,
5G

> TEKS for this Unit
> $7^{\text {th }}-7.2, \mathrm{D} ; 7.3 \mathrm{~A} ;$
> $8^{\text {th }}-8.2 \mathrm{AB} ; 8.3 \mathrm{~B}, 8.5 \mathrm{~A}$

## Unit 3, Lesson 1 Grades <br> 7-8

Daily Routine

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - length
- Lesson 2 - capacity
- Lesson 3 - omit


## Lesson 1 Materials

- ruler
- plain white copy paper
- crayons or markers
- Money Kit: 1 dollar bill, 2 quarters, 3 dimes, 4 nickels, 5 pennies


## Lesson 1 Student Groups

1) Trace bill in upper left corner of construction paper.
2) Do a crayon rubbing of each coin next to the dollar bill.
3) Measure bill to the nearest inch, label with measurement
4) Measure coin collections to the nearest inch, label with measurements
5) Compare coin group measurements and discuss any observations gathered about their diameters.

Solve It! Multi-step problem solving

- Lesson 1 - threes, related problems
- Lesson 2 - pairs, 3-step problem
- Lesson 3 - pairs, 3-step problem


## Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot


## $X$ Marks the Spot

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot


## CGI

- Lesson 1 - rate, measurement division
- Lesson 2 - rate, multiplication (assessment item 7)
- Lesson 3 - price, partitive (assessment item 6)

|  | Unit 3, Lesson 1 Grades 7-8 <br> Daily Routine - continued 6is |
| :---: | :---: |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
| Technology Option The educreations iPad app lets you turn your iPad into a mini white board. | OPTIONAL <br> Target Number <br> - Lesson 1 - Target Number 25 <br> - Lesson 2 - Target Number 50 <br> - Lesson 3 - Target Number 75 <br> Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your <br> Teacher's Guide.) |
| Assessment Items <br> Students are introduced to and practice the skills necessary for success on the following assessment items: 1, 2, 3, 6, 9 <br> TEKS for this Unit |  |

## Unit 3 Lesson 1 - Daily Routines - Measurement Lab

One per student
Coin Measures - Measurement Lab Record Sheet
Students should work in small groups.

## Materials:

- ruler
- plain white copy paper
- crayons or markers
- Money Kit: 1 dollar bill, 2 quarters, 3 dimes, 4 nickels, 5 pennies

Task:

1) Trace bill in upper left corner of copy paper.
2) Do a crayon rubbing of each coin next to your dollar bill drawing.
a. place coin (heads up) underneath paper in desired position
b. rub crayon over coin gently until its image appears on the paper
c. label coin rubbing with appropriate name and value
d. repeat process for each coin
3) Measure bill to the nearest inch, label drawing with measurement.
4) Measure coin collections to the nearest inch, label drawings with measurements
a. lay two quarters side-by-side underneath the dollar drawing
b. trace around both coins
c. measure distance from the start of the first quarter to the end of the second quarter, label measurement
d. repeat process for remaining coin groups using the specified number of coins within each group.
5) Compare coin group measurements and discuss any observations you gather from their diameters.

Keep your coin poster. You will revisit this activity later in the lesson.

Unidad 3 Lección 1 - Rutinas diarias - Laboratorio de medición
Una por estudiante

## Medidas de monedas - Hoja de registro del laboratorio de medición

Los estudiantes deben trabajar en grupos pequeños.

## Materiales:

- regla
- papel de copia blanco
- crayones o marcadores
- Kit de dinero: 1 billete de un dólar, 2 monedas de 25 centavos, 3 monedas de 10 centavos, 4 monedas de 5 centavos, 5 centavos


## Tarea:

1) Calca el billete en la esquina superior izquierda del papel de copia.
2) Calca cada moneda con crayón al lado del dibujo del billete de un dólar.
a) coloca las monedas (las caras hacia arriba) debajo del papel en la posición deseada;
b) pinta con el crayón encima de la moneda con suavidad, hasta que la imagen aparezca en el papel;
c) etiqueta el dibujo de la moneda con el nombre y el valor apropiados;
d) repite el proceso para cada moneda.
3) Mide el billete a la pulgada más cercana, etiqueta el dibujo con la medida.
4) Mide la colección de monedas a la pulgada más cercana, etiqueta los dibujos con las medidas.
a) coloca dos monedas de 25 centavos lado a lado debajo del dibujo de un dólar;
b) traza el contorno de ambas monedas;
c) mide la distancia desde el comienzo de la primera moneda de 25 centavos hasta el extremo de la segunda moneda de 25 centavos, etiqueta la medida;
d) repite el proceso para los grupos de monedas restantes usando el número especificado de monedas dentro de cada grupo.
5) Compara las medidas de los grupos de monedas y habla sobre cualquier observación que puedas reunir de sus diámetros.

## Conserva tu póster de monedas. Más adelante en la lección, volverás a esta actividad.

## Unit 3 Lesson 1 - Daily Routines - Solve It! Problems (Group of Three)

One per student

## Partner \#1 - Problem 1:

Lupita is planning a brunch party for 36 people. She wants to serve each guest two sausage croissants. If she bakes one sausage inside each croissant, how many sausages does she need to purchase?

## Partner \#2 - Problem 2:

The sausages come in packages of 8 . Lupita bought just the right number of packages to allow for two servings per guest. How many packages did she buy?

- What do you need from Problem 1 to solve Problem 2?
- Be sure to verify the answer to Problem 1 before solving Problem 2.
- What is the answer to the question? Show your solution strategy.


## Partner \#3 - Problem 3:

Lupita always buys good quality food even when the price is higher. The sausages she bought were $\$ 7.49$ per package. What was the total price she paid for the sausages (excluding tax)?

- What do you need from Problem 1 to solve Problem 2?
- Be sure to verify the answer to Problem 1 before solving Problem 2.
- What is the answer to the question? Show your solution strategy.


## Unidad 3 Lección 1 - Rutinas diarias - ¿Resuélvelo! Problemas (Grupo de 3)

Una por estudiante

## Compañero \# 1 - Problema 1:

Lupita está planificando una fiesta con brunch (desayuno-almuerzo) para 36 personas. A cada invitado le quiere servir dos cruasanes con salchicha. Si hornea una salchicha dentro de cada cruasán, ¿cuántas salchichas necesita comprar?

## Compañero \# 2 - Problema 2:

Las salchichas vienen en paquetes de 8. Lupita tan solo compró el número exacto de paquetes para servir dos porciones por invitado. ¿Cuántos paquetes compró?

- ¿Qué necesitas del problema 1 para resolver el problema 2?
- Asegúrate de verificar la respuesta del problema 1 antes de resolver el problema 2.
- ¿Cuál es la respuesta a la pregunta? Muestra tu estrategia de solución.


## Compañero \# 3 - Problema 3:

Lupita siempre compra alimentos de buena calidad, incluso cuando el precio es mayor. Las salchichas que compró costaban $\$ 7.49$ por paquete. ¿Cuál fue el precio total que pagó por las salchichas (sin incluir impuestos)?

- ¿Qué necesitas del problema 1 para resolver el problema 2?
- Asegúrate de verificar la respuesta del problema 1 antes de resolver el problema 2.
- ¿Cuál es la respuesta a la pregunta? Muestra tu estrategia de solución.

Unit 3 Lesson 1 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materials:

None for this activity

## Task:

Katrina and Malcolm worked at Big Tree Kids Camp over the summer and earned $\$ 550.00$ together. They shared it equally between themselves. Katrina wanted to save most of her money to buy a car, so she put $\$ 200$ into her savings account. She gave her little brother $\$ 20$ to go to the movies with friends. How much money did Katrina have left for herself? What percentage is that dollar amount from the original earnings?
$X$ Marks the Spot

| Solve for $x$ in these two equations. |  |
| :--- | :--- |
| $\mathbf{5 x - 6}=\mathbf{3 x - 8}$ | $6 x-7=4 x+7$ |
|  |  |

# Unit 3 Lesson 1 - Daily Routines - Fraction Action and $X$ Marks the Spot 

One per student

## Acción de fracciones

## Materiales:

Ninguno para esta actividad

## Tarea:

Katrina y Malcolm trabajaron en Big Tree Kids Camp durante el verano y ganaron \$550.00 entre los dos. Lo compartieron entre ellos en partes iguales. Katrina quería ahorrar la mayor parte de su dinero para comprar un auto, por lo que puso $\$ 200$ en su cuenta de ahorros. Le dio $\$ 20$ a su hermano menor para que fuera al cine con sus amigos. ¿Cuánta plata le quedó a Katrina para ella? ¿Qué porcentaje es esa cantidad de dólares de las ganancias originales?

## $X$ Marca el sitio

| Resuelve para $x$ en estas dos ecuaciones. |  |
| :--- | :--- |
| $\mathbf{5 x - 6}=\mathbf{3 x} \mathbf{- \mathbf { 8 }}$ | $\mathbf{6 x - 7}=\mathbf{4 x} \boldsymbol{+ 7}$ |
|  |  |
|  |  |
|  |  |

Unit 3 Lesson 1-3 - Daily Routines - CGI Problems
One per student
CGI - Where the Sidewalk Ends

|  | Multiplication | Measurement Division | Partitive <br> Division |
| :---: | :---: | :---: | :---: |
| Grouping/ Partitioning | If you stack $\qquad$ rows of $\qquad$ quarters each. How many quarters would you stack? <br> $(7,9)$ <br> $(23,7)$ <br> $(12,15)$ | If you have $\qquad$ quarters that you want to stack in equal stacks of $\qquad$ quarters each, how many stacks can you make? <br> $(56,8)$ <br> $(112,7)$ <br> $(336,21)$ | You have $\qquad$ quarters that you want to share equally among $\qquad$ friends. How many quarters will each friend receive? <br> $(49,7)$ <br> $(288,12)$ <br> $(216,9)$ |
| Rate | The Gypsy walked $\qquad$ miles per hour. If she walked a constant rate, how many miles did she walk in $\qquad$ hours? <br> $(15,3)$ <br> $(12.2,3)$ $\left(12 \frac{1}{2}, 3\right)$ | The Gypsy walked $\qquad$ miles per hour. At that rate, how long did it take her to walk $\qquad$ miles? $\begin{aligned} & (15,45) \\ & (12.2,48.8) \\ & \left(12 \frac{1}{2}, 37 \frac{1}{2}\right) \end{aligned}$ | The Gypsy walked a total of $\qquad$ miles in $\qquad$ hours. If she walked at a constant speed, how many miles an hour did she walk? <br> $(45,3)$ <br> $(48.8,4)$ $(50,4)$ |
| Price | Hector bought $\qquad$ broken toys at $\qquad$ each. How much did he pay for the broken toys? <br> (15, \$.27) <br> ( $21, \$ .50$ ) <br> (124, \$.75) | Hector found broken toys that cost $\qquad$ each. How many broken toys could he purchase for $\qquad$ ? | Hector bought $\qquad$ broken toys for which he paid a total of $\qquad$ . If each toy cost the same, what did he pay per toy? <br> (12, \$3.00) <br> ( $24, \$ 18.00$ ) <br> (36, \$45.00) |

## Unit 3 Problemas CGI para Where the Sidewalk Ends

|  | Multiplicación | División para medir | División partitiva |
| :---: | :---: | :---: | :---: |
| Agrupar/ <br> Separar | Si formas $\qquad$ montones con $\qquad$ monedas de 25¢ en cada uno, ¿cuántas monedas hay en total? $(7,9)(23,7)(12,15)$ | Si tienes $\qquad$ monedas de 25 y quieres ponerlas en montones iguales de $\qquad$ monedas cada uno, ¿cuántos montones puedes hacer? $(56,8) \quad(112,7) \quad(336,21)$ | Tienes $\qquad$ monedas de $25 \nless$ que quieres repartir en partes iguales entre tus $\qquad$ amigos. ¿Cuántas monedas recibirá cada amigo? $(49,7)(288,12) \quad(216,9)$ |
| Velocidad (tasa) | La gitana caminó $\qquad$ millas por hora. Si caminó a una velocidad constante, ¿cuántas millas caminó en $\qquad$ horas? $(15,3) \quad(12.2,3) \quad(121 / 2,3)$ | La gitana caminó $\qquad$ millas por hora. A esa velocidad, ¿cuánto tiempo se tardó en caminar $\qquad$ millas? $(15,45)(12.2,48.8)$ $(121 / 2,371 / 2)$ | La gitana caminó un total de $\qquad$ millas en $\qquad$ horas. Si caminó a una velocidad constante, ¿cuántas millas por hora caminó? $(45,3)(48.8,4) \quad(50,4)$ |
| Precio | Héctor compró $\qquad$ juguetes dañados a $\qquad$ cada uno. ¿Cuánto pagó por los juguetes dañados? $\begin{gathered} (15, \$ .27)(21, \$ .50) \\ (124, \$ .75) \end{gathered}$ | Héctor encontró unos juguetes dañados que costaban $\qquad$ cada uno. ¿Cuántos juguetes dañados podría comprar con $\qquad$ ? $\begin{aligned} & (\$ .25, \$ 1.50) \\ & (\$ .75, \$ 4.50) \\ & (\$ .95, \$ 5.70) \end{aligned}$ | Héctor compró $\qquad$ juguetes dañados por los que pagó un total de $\qquad$ Si cada juguete costó lo mismo, ¿cuánto pagó por cada juguete? <br> (12, \$3.00) <br> ( $24, \$ 18.00$ ) <br> (36, \$45.00) |

## Unit 3 Writing Workshop

Genre: Poetry
> Writing Objective: Students will write free verse poetry that sends the reader a message.
$>$ Organization of text:

- Students write free verse poetry - poems that don't rhyme, or have a certain number of words/syllables per line. The reason for choosing free verse poetry is that it gives students much more freedom to express themselves; they don't need to limit their word choice to trying to find a rhyme, or trying to use a certain number of syllables. Also, for ELLs it is very difficult to think of rhymes for what they want to express. Free verse poetry allows ELLs to use the language they know to communicate their ideas about a topic.
> Possible sequence of mini-lessons:

1. Brainstorm: Share with students examples of free verse poems. Show how they can take any shape. Some lines might be long, others short; the lines don't have to rhyme. The poet can simply express an idea freely!

Discuss with students how Shel Silverstein uses his poems to send a message to readers. What messages have we seen in some of his poems? What other messages might people want to express through poems? Have students brainstorm a list, and write them down. Guide students to think about the kinds of social issues that middle school student's face - these should be on the list. For example: moving to a new country/city/town; bullying; fitting in; feeling lonely; the importance of a true friend; family; etc. Free verse poetry is an excellent way for students to express the complex issues they encounter in their daily lives.

Have students jot down in their notebooks what topics they might want their poems to express. What message do they want readers to understand from reading their poems?
2. Draft: Model for students how you take a topic for a poem (and the message you want to express with that topic), and how you draft a poem using free verse.

Provide time for students to write independently to draft a free verse poem. Students may draft multiple poems. You can also encourage students to write a poem in their native language that expresses a similar idea as what they wrote in English.

Circulate to help students think of how they want to express their message through the poem.
3. Revise: Model for students how you look at a poem you've written, and think about other words you could use that would paint a better picture for the reader. Identify some "basic" words that you could change for a more interesting synonym. Remind students of how they have been working with synonyms in each of the Classroom Lessons. Students can use a website like www.thesaurus.com to search for synonyms. They can also use the Thesaurus feature on Microsoft Word.
Circulate while students are working and help them think of synonyms. You can also continue to help students think about how to express a particular message through free verse poetry.
4. Publish: Have students read aloud their poems to the class, in English as well as their native language if they chose to write multilingual poems. Students can discuss the social issues their classmates wrote about, and what message they think each poem has.


## Cd Past-tense Mini-Unit

Teach a mini-unit on verbs that need the final consonant doubled before adding an ending, such as swap to swapped.
http://www.am.dodea.edu/bragg/d evers/Elements\%20of\%20Literac y/Session\%201/Articles\%20and\% 20Questions/Word\%20Study\%20
$=$
\%20Intermediate\%20Classrooms. pdf

## Pirate's Corner

Share the class's most original synonym poster online today in Pirate's Corner.

## Unit 3, Lesson 1

Classroom Lesson - continued

## Grades 7-8



Build on students' responses to arrive at the idea that it means giving away something and taking something else in return.

## Synonym/Antonym Web activity

What other words mean something similar to swap? What are some synonyms?

Create a Synonym Web for the word swap. To show that the words have a similar meaning, you can write them in green. If you add any antonyms, you can write them in red. This provides a visual for students to understand the relationship between the words.

You can scaffold students' sharing by providing guiding questions if necessary. For example:

- Ask, "When you want to take something back to a store, and get something else instead, what do they call that?" exchange
- When colonists arrived in the Americas, they swapped things with the indigenous people - for example, the indigenous people gave animal furs, and the colonists gave beads. Do you remember the word we use in social studies to describe this instead of the word swap? trade

Note: When students' share the word trade (or when you introduce it to students), show them the word card for traded, and put it on the word wall. Explain that the verb is in the past tense, because this poem is about a boy who traded things in the past.

Build on what students share, adding other synonyms they don't think of. You can also include antonyms on this web. Ask, "What are some antonyms for swap?" (What is the opposite of swap?)

After guiding students to determine antonyms, your Synonym/Antonym Web could look like the following example. Ask students why they think it is important to learn synonyms and antonyms.


## Guided Reading Groups and Independent Reading Connection <br> If you conduct guided reading groups as part of your balanced literacy instruction, or provide time for independent reading, you can reinforce these same reading strategies.

After students have read the text on their own, to improve their comprehension of the more difficult parts:

- Monitoring for Comprehension:

When you ask students questions about the key ideas and details in the text, have them point to specific excerpts from the text. This helps students provide text evidence to support their response.

- Inferring: What is the author really saying in this part?

When it says $\qquad$ , what does that really mean?

Why did the author write this? (the author's purpose)

How is this character really feeling? How do you know?

## Listening Center: Independent

## Reading

Let students listen to "Smart" in a Listening Center as part of their independent reading time.

Students can also listen to other Shel Silverstein poems at his website:
http://shelsilverstein.com/html/bo oks.asp
The website is a great way for students to read along as they listen to someone read aloud different poems, and watch the animations that accompany the poems.

Unit 3, Lesson 1
Grades 7-8
Classroom Lesson - continued
dURING READING
Comprehensible Input - Literature \& Vocabulary
For this read aloud, the goal is to support students' comprehension of the text by modeling and practicing several reading strategies:

- Monitoring for Comprehension
- Inferring (including Author's Purpose)

For this short poem, you will read it aloud without stopping, and then discuss it afterwards with students, using these two reading strategies.

Have the poem displayed somewhere the whole class can see, such as written on chart paper, or projected onto a screen. If this is not possible, then pass out copies of Where the Sidewalk Ends from the classroom set right before you begin the read aloud, and have students open up to the poem "Smart."

ELLs: To provide more visual support while reading this poem, you can use the BLM picture cards that show images of the money the boy trades in the poem. While reading the poem aloud, simply affix or display each picture card next to the appropriate lines. You can also have this done ahead of time.

Read the poem aloud to the students. Afterwards, ask the following discussion questions:

## Monitoring for Comprehension

- Teacher Question: In this poem, what does the boy swap (or trade)? Talk with your partner.

Regroup the class and have students share. Help students refer to specific lines in the poem when sharing. (Ex: The boy swaps his money for more coins, but smaller and smaller amounts. For example, in line 3 it says he swapped one dollar for two quarters.) If students don't refer to a specific line, then after they share, ask, "What line or lines from the poem gave you that information?"

## Inferring

- Teacher Question: The boy thinks his dad is very proud of him. How is the dad really feeling at the end of the poem? How do you know? Talk with your partner.

Regroup the class, and have a few students share. Again, make sure they reference specific lines of the poem to provide text evidence.

## Inferring

- Teacher Question: Why do you think Shel Silverstein titled this poem "Smart?"

Beginning ELLs: Benefit from listening to these short poems. They can listen to them repeatedly to develop word recognition, and also develop their sense of rhyme in English.

## Intermediate \& Advanced

ELLs: Benefit from listening to a poem repeatedly to develop fluency, and reading along softly when possible. Have students record themselves reading "Smart" aloud using the podcast tool on MAS Space. Then, they listen to that poem several times, reading along softly. When they feel they've had enough time to practice, they record themselves reading the poem again. Have students compare their two recordings to see how their fluency has improved.

You may want to give students the option to post their recordings of the poem on MAS Space.

## Independent Reading

The goal is to immerse students in poetry this week. Throughout the unit, have the classroom set copies of Where the Sidewalk
Ends available for students to read during independent reading time. This will give students the opportunity to read the poems you share as a class, as well as other poems by Shel Silverstein.

If possible, create a "Poetry" book basket that students can choose from to read poetry from other authors. This basket can include books of poetry, as well as photocopies of poems. You can photocopy on cardstock a variety of poems you think your students will connect with.

## Unit 3, Lesson 1 <br> Classroom Lesson - continued

## Grades 7-8 <br> \%

- Teacher Question: Why do you think Shel Silverstein wrote this poem? (What is the author's purpose?)

Use students' discussion to arrive at the idea that "bigger isn't always better."

After this discussion of the poem, have the class read the whole poem with you as a Shared Reading. They can do this either by looking at the poem you have displayed or by reading from their copy of the book.

## AFTER READING

## Practice and Application - Vocabulary \& Literature Synonym Story Board activity

1. Explain: To explain what happened in this poem, we are going to create a Synonym Story Poster. We will use the synonyms from our web to explain all of the things the boy in the poem swapped.
2. Model how to make a Synonym Story Poster - your example can be the BLM Synonym Story Poster. Please use this just as an example for you to recreate the poster in front of the students, beginning with the oval in the center. Be sure to write the word, then create the opening sentence that uses the word. The first synonym then picks up the story line and continues.
3. Tell students they will be writing the same type of Synonym Story Poster to explain what happened in "Smart," using synonyms for swapped.
4. Have students create their synonym poster. As you circulate the room, ask them to read their sentences to you.

ELLs: While students are working, you may want to pull a small group of ELLs who you feel will struggle with this writing activity. Help ELLs write a different synonym in each bubble on the Story Board, copying the words from the Synonym Web you created at the beginning of the lesson. Then, to add a sentence for each synonym explaining what happened in the poem, you can use shared writing. Have the students orally explain what happened in the poem, and then you write down a complete sentence for each part using their ideas. If students are able, they can copy these sentences onto their Story Boards.


Unit 3 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.
swapped

## traded

## collector



## cambiar ${ }_{\text {Gatporvesen }}$

intercambiar ${ }_{\text {Glapornsep }}$

## colleccionista

## gomias



| Materials <br> - BLM Fractions, Decimals, Percents | Unit 3, Lesson 1 Grades 7-8 <br> Math Lesson 6is |
| :---: | :---: |
| Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate <br> percent of <br> discount <br> tip <br> Literature Vocabulary <br> swapped <br> traded <br> collector <br> gypsy <br> gypsies | Math Objectives: <br> - Find ratio of single coin value to a dollar. <br> - Find fraction and decimal representation of single coin value out of a dollar. <br> - Find percent of coin value of a dollar. <br> - Compare the amount the SMART son had to a dollar and find the percent of a dollar for each swap. <br> - Find the percent of money missing from the dollar for each swap. <br> Language Objectives: <br> - Listen and follow directions. <br> - Verbalize strategies and justify your actions. |
| ELPS (English Language Proficiency Standards - TX) 2F, 2G, 2I, 3C, 3E, 3H, 3J | Building Background <br> In earlier units we found how to set up ratios to compare quantities. What is a ratio? <br> A ratio is a comparison and can be expressed several ways. For example, Let's find the ratio of the number of coins it takes to make a dollar and one dollar? <br> Quarter: verbally we can say there are 4 quarters to 1 dollar. <br> Numerically there are three ways: 4 to 1 , also expressed $4: 1$ and $\frac{4}{1}$. All of them tell us it takes 4 quarters to make 1 dollar. <br> What about a dime? What is the ratio of the number of dimes it takes to make a dollar to one dollar? <br> Have students express the ratio in words, and three different numerical ways. <br> 10 dimes to 1 dollar; 10 to $1 ; 10: 1$, and $\frac{10}{1}$. <br> (Continue in the same fashion for nickels and then pennies.) <br> What we want to find today is the PERCENT OF the dollar for each of the coin values. PERCENT means "per 100." <br> The question to be answered today is: <br> - What percent of one dollar is one $\qquad$ (and we'll use each coin to fill in this blank.) |




Unit 3 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## ratio

## equivalent

## rate

## unit rates

Unit 3 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## percent of

## discount

> tip

Unit 3 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.
razón
equivalente

## tasa

## tasa unitaria

Unit 3 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.


## descuento

> propina

Unit 3 Lesson 1 - Math Lesson
One per student

## Fractions, Decimals, Percents

Fill in the table and answer the questions below. Be sure to show your strategies.

|  | fractional part of <br> a dollar | equivalent <br> fraction in <br> hundredths | decimal <br> representations | percent of a dollar |
| :---: | :---: | :---: | :---: | :---: |
| quarter |  |  |  |  |
| dime |  |  |  |  |
| nickel |  |  |  |  |
| penny |  |  |  |  |

What percent of one dollar were the two quarters?

What percent of one dollar was the boy lacking in the quarter swap?

What percent of one dollar were the three nickels?

What percent of one dollar was the boy lacking in the nickel swap?

What percent of one dollar were the four dimes?

What percent of one dollar was the boy lacking in the dime swap?

What percent of one dollar were the five pennies?

What percent of one dollar was the boy lacking in the penny swap?

## Unidad 3

Lección 1 - Lección por TV-Fracciones, decimales, porcentajes

| Monedas | Fracción de un <br> dólar | Fracción <br> equivalente en <br> centésimos | Representación <br> decimal | Porcentaje de un <br> dólar |
| :---: | :---: | :---: | :---: | :---: |
| $25 \phi$ |  |  |  |  |
| $10 \varnothing$ |  |  |  |  |
| $5 \phi$ |  |  |  |  |
| $1 \phi$ |  |  |  |  |

¿Qué porcentaje de un dólar son 2 monedas de $25 ¢$ ? Muestra tu estrategia.
¿Qué porcentaje de un dólar le faltaba al niño cuando intercambió monedas de 25¢ ? Muestra tu estrategia.
¿Qué porcentaje de un dólar son 3 monedas de $5 ¢$ ? Muestra tu estrategia.
¿Qué porcentaje de un dólar le faltaba al niño cuando intercambió monedas de 5¢ ? Muestra tu estrategia.
¿Qué porcentaje de un dólar son 4 monedas de $10 ¢$ ? Muestra tu estrategia.
¿Qué porcentaje de un dólar le faltaba al niño cuando intercambió monedas de $10 ¢$ ¢ Muestra tu estrategia.
¿Qué porcentaje de un dólar son 5 monedas de $1 \not \subset$ ? Muestra tu estrategia.
¿Qué porcentaje de un dólar le faltaba al niño cuando intercambió monedas de 1 ¢ ? Muestra tu estrategia.

## Unit 3

Lesson 1 - TV Lesson - Fractions, Decimals, Percents TEACHER KEY

| Coins | Fractional <br> Part <br> of a Dollar | Equivalent <br> Hundredths <br> Fraction | Decimal <br> Representation | Percent of <br> a Dollar |
| :---: | :---: | :---: | :---: | :---: |
| Quarter | $\frac{1}{4}$ | $\frac{25}{100}$ | 0.25 read 25 <br> hundredths | $25 \%$ |
| Dime | $\frac{1}{10}$ | $\frac{10}{100}$ | 0.10 read 10 <br> hundredths | $10 \%$ |
| Nickel | $\frac{1}{20}$ | $\frac{5}{100}$ | 0.05 read 5 <br> hundredths | $5 \%$ |
| Penny | $\frac{1}{100}$ | $\frac{1}{100}$ | 0.01 read 1 <br> hundredth | $1 \%$ |

What percent of one dollar were the two quarters? Show your strategy.
Any strategy student can explain reasonably for the solution gained. 50\%
What percent of one dollar was the boy lacking in the quarter swap? Show your strategy.
Any strategy student can explain reasonably for the solution gained. 50\%

What percent of one dollar were the three dimes? Show your strategy.
Any strategy student can explain reasonably for the solution gained. 30\%
What percent of one dollar was the boy lacking in the dime swap? Show your strategy.
Any strategy student can explain reasonably for the solution gained. 70\%
What percent of one dollar were the four nickels? Show your strategy.
Any strategy student can explain reasonably for the solution gained. 20\%
What percent of one dollar was the boy lacking in the dime swap? Show your strategy.
Any strategy student can explain reasonably for the solution gained. $80 \%$
What percent of one dollar were the five pennies? Show your strategy.
Any strategy student can explain reasonably for the solution gained. 5\%
What percent of one dollar was the boy lacking in the penny swap? Show your strategy.
Any strategy student can explain reasonably for the solution gained.

| Materials <br> - BLM Recursive Review Problems Lessons 1-3 | Unit 3, Lesson 1 Grades 7-8 <br> Follow-up 6) |
| :---: | :---: |
| Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate <br> percent of <br> discount <br> tip <br> Literature Vocabulary <br> swapped <br> traded <br> collector <br> gypsy <br> gypsies <br> ELPS (English Language <br> Proficiency Standards - TX) <br> 2I, 3E, 3H, 4F, 5G | Math Objectives: <br> - Find ratio of single coin value to a dollar. <br> - Find fraction and decimal representation of single coin value out of a dollar. <br> - Find percent of coin value of a dollar. <br> - Compare the amount the SMART son had to a dollar and find the percent of a dollar for each swap. <br> - Find the percent of money missing from the dollar for each swap. <br> Language Objectives: <br> - Listen and follow directions. <br> - Verbalize strategies and justify your actions. <br> - Explain problem solving strategy to peers. <br> - Explain how finding unit rates can be helpful for you and your family. |
|  | Practice and Application <br> Based on your Math Lesson observations of the students, divide students into three groups: <br> a) understand concept with minimal help <br> b) understand concept with some help <br> c) do not understand concept and need small group instruction with teacher <br> Practice similar problems with compatible numbers for the small group instruction. Typically, their struggles will be the arithmetic if they haven't made solid number relationships, or understanding WHY it's necessary to find an equivalent fraction over 100 . <br> QUESTIONS <br> - What do the numbers in this fraction represent? <br> - What do the numbers in this ratio represent? <br> - How did you find the equivalent fraction with a denominator of 100 ? <br> - What does the decimal represent? <br> - How do you read the decimal? <br> - How can number sense help you in answering this question? (regarding percent of dollar lacking) <br> - Explain the relationship among the fraction/decimal/percent representations. |



## Recursive Review Problems

Solve the recursive review problems using any strategy of your choice.

## Unit 3 Lesson 1

Suppose you live 3 miles from school. When you are fresh in the morning, you can jog a mile in 10 minutes. But by the afternoon it takes you 15 minutes to walk a mile. How long does it take you to walk to and from school each day?

## Unit 3 Lesson 2

Mr. Juarez was printing the signs for his weekly produce sales. What would a customer pay for only 1 pound of apples?

| Featured Produce <br> Special |  |
| :---: | :---: |
|  |  |

## Unit 3 Lesson 3

Angel made a model of a B-52 Bomber with a scale of $1: 144$. If the actual plane measures 159 ft . long with a wingspan of 185 ft ., what are the dimensions on Angel's model rounded to the nearest tenth of a foot?

Repaso recursivo
Resuelve este problema de velocidad. Muestra tu trabajo.

## Unit 3 Lesson 1

Supón que vives a 3 millas de la escuela. Cuando estás descansado en la mañana, puedes correr una milla en 10 minutos. Pero en la tarde te tardas 15 minutos en caminar una milla. ¿Cuánto tiempo te tardas en ir y venir de la escuela cada día?

## Unit 3 Lesson 2

El Sr. Juárez estaba imprimiendo los anuncios para su venta semanal de frutas y verduras. Este uno de sus anuncios.
¿Cuánto pagaría un cliente si solo necesitara una libra?


Manzanas 5 libras por $\$ 3.00$

## Unit 3 Lesson 3

Ángel hizo un modelo de un bombardero B-52 con una escala de 1:144.
Si el bombardero real mide 159 pies de largo y tiene una envergadura de 185 pies, ¿cuáles son estas 2 dimensiones del modelo de Ángel?

| Materials <br> - 1 dill pickle | Unit 3, Lesson 1 Grades 7-8 |
| :---: | :---: |
| - 2 paper dessert plates | Snack Fractions |
| - 2 paper towels <br> - 1 plastic knife <br> All items listed above per partner pair | Students should wash their hands before this activity if using food items. |
| - BLM Dill Pickle-Snack <br> Fractions <br> Math Objectives | Snack Fractions <br> Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack. |
| - Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. | Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, extend: |
| - Convert between fractions, decimals, whole numbers and percents. | QUESTIONS <br> - Explain how you would calculate the percent of the total number of pickles ONE pickle represents. |
| - Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). | - How can you use proportions to find the percent that your fractional portion represents of the whole jar? <br> Finally, let them share the dill pickle with a partner. |
| - Estimate and find solutions to application problems involving percent. | (Naturally, if you think the portions suggested in the materials list are too small for a middle schooler's snack, feel free to increase the |
| Language Objectives <br> - Discuss how ratios and proportions can be used to solve real-world problems. | in halves - they've already done a great deal of work to get the snack.) <br> Snack Fraction Journal Writing: BLM Dill Pickle Fractions |
| Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate <br> percent of <br> discount <br> tip | Objectives: Review the objectives with the class, making sure they understand how they achieved each. |
| Literature Vocabulary <br> swapped <br> traded <br> collector <br> gypsy <br> gypsies |  |

## Unit 3 Lesson 1 - Snack Fraction

One per student

## Dill Pickle - Snack Fractions

Work with your partner to solve the problems. Be sure to show your strategies.

There were $\qquad$ pickles in the jar before it was opened and shared with the class.

What percent of the jar does your half represent?


My teacher paid $\qquad$ for the jar of pickles.

What would the cost of one pickle be based on that price?

If the jar goes on sale for $25 \%$ off, what would the new price be?

What would the cost of one pickle be based on the sale price?

Una por estudiante

Unit 3 Lesson 1 - Snack Fraction
One per student

## Pepinillos - Fracciones de refrigerios

Colabora con tu compañero para resolver los problemas. Asegúrate de mostrar tus estrategias.

Había $\qquad$ pepinillos en el frasco antes de abrirlo y compartirlos con la clase.
¿Qué porcentaje del frasco representa tu mitad?

Mi maestro pagó $\qquad$ por el frasco de pepinillos.
¿Cuál sería el costo de un pepinillo basado en ese precio?


Si ponen el frasco en oferta a un $25 \%$ menos, ¿cuál sería el nuevo precio?
¿Cuál sería el costo de un pepinillo basado en el precio de oferta?

Unit 3 Lesson 1 - Family Fun
Dear $\qquad$
We read the poem Smart by Shel Silverstein in the book Where the Sidewalk Ends.

Our math lesson used these ideas from the story...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
My teacher would like for us to:

- find an item on sale and calculate its new price before tax.

Sincerely,

the poems and drawings of Shel Silverstein

A mi maestro/a le gustaría que nosotros:

- Buscar algo en venta y calcular el nuevo precio sin impuestos.

Atentamente,

```
Materials
- BLM Collector's Box-
    Measurement Lab Record Sheet
- BLM Solve It! Problem 3
- BLM Fraction Action and }
Marks the Spot
- BLM Lessons 1-3 CGI Where
the Sidewalk Ends (listed in
Lesson 1)
```

Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 3-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.


## Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate <br> percent of <br> discount <br> tip

Literature Vocabulary
swapped
traded
collector
gypsy
gypsies

ELPS (English Language Proficiency Standards - TX)
2C, 2D, 2E, 2I, 3D, 3E, 4F, 5G

Unit 3, Lesson 2
Daily Routine
Grades 7-8


The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - length
- Lesson 2 - capacity
- Lesson 3 - omit


## Lesson 2 Materials

- large box (at least $24 " x 24 " x 18$ ")
- assorted broken objects (enough to fill about 1/4 of the box during the activity)
- tape measures


## Lesson 2 Student Groups (threes)

1) groups measure dimensions of box to nearest inch
2) calculate approximate capacity/volume of box
3) predict the percent of box that will be filled with broken objects
4) after objects are placed in box, groups discuss and then calculate the actual percentage filled by items
5) whole class discussion regarding predictions and actual measurements
6) groups determine percentage of box that is not filled

Solve It! Multi-step problem solving

- Lesson 1 - threes, related problems
- Lesson 2 - pairs, 3-step problem
- Lesson 3 - pairs, 3-step problem

Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot
$X$ Marks the Spot
- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot

CGI

- Lesson 1 - rate, measurement division
- Lesson 2 - rate, multiplication (assessment item 7)
- Lesson 3 - price, partitive (assessment item 6)

| Assessment Items <br> Students are introduced to and practice the skills necessary for success on the following assessment items: 1, 2, 3, 6, 9 | Unit 5, Lesson 2 Grades 7-8 <br> Daily Routine - continued 6.50 |
| :---: | :---: |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
|  | $\frac{\text { OPTIONAL }}{\text { Target Number }}$ <br> - Lesson 1 - Target Number 25 <br> - Lesson 2 - Target Number 50 <br> - Lesson 3 - Target Number 75 |
|  | Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

## Unit 3 Lesson 2 - Daily Routines - Measurement Lab

## Collector's Box - Measurement Lab Record Sheet

Students should work in groups of three.

## Materials:

- large box (at least $24 " \times 24 " \times 18$ ")
- assorted broken objects (enough to fill about $1 / 4$ of the box during the activity)
- tape measures


## Task:

1) Measure the dimensions of the box to nearest inch.
length $\qquad$
width $\qquad$
height $\qquad$
2) Calculate the approximate capacity/volume of the box.
3) Discuss within your groups and make an educated prediction of the percent of the box that will be filled with the broken objects your teacher has displayed.

Prediction percentage $\qquad$ Explain your thinking.
4) After objects are placed in the box, calculate the actual percentage filled by the items.

Actual percentage $\qquad$
5) After the class discusses their predictions and actual percentages, calculate the percentage of the box that is not filled.

Percentage not filled $\qquad$

## Unidad 3 Lección 2 - Rutinas diarias - Laboratorio de medición

Una por estudiante

## La caja recolectora - Hoja de registro del laboratorio de medición

Los estudiantes deben trabajar en grupos de 3.

## Materiales:

- caja grande (como mínimo de $24 " \times 24 " \times 18$ ")
- objetos rotos variados (suficiente cantidad como para llenar aproximadamente $1 / 4$ de la caja durante la actividad)
- cinta métrica


## Tarea:

6) Mide las dimensiones de la caja a la pulgada más cercana.
longitud
anchura
altura $\qquad$
7) Calcula el volumen/la capacidad aproximados de la caja.
8) Debatan con el grupo y hagan una predicción educada del porcentaje de la caja que se llenará con los objetos rotos que el maestro ha mostrado.

Porcentaje de predicción $\qquad$ Explica tu razonamiento.
9) Luego de que los objetos se coloquen dentro de la caja, calcula el porcentaje real llenado por los artículos.

Porcentaje real $\qquad$
10) Luego de que la clase debata sus predicciones y porcentajes reales, calcula el porcentaje de la caja que no está lleno.

Porcentaje no llenado $\qquad$

## Unit 3 Lesson 2 - Daily Routines - Solve It! Problems (pairs)

One per student
Work with your partner to solve the problem.

## Problem 3:

Lupita needed paper plates, cups, plastic ware, and napkins for her 36 guests. She could buy 15 plates for $\$ 11.95,15$ cups for $\$ 7.89$, 20 forks for $\$ 3.49$, 20 knives for $\$ 3.49$, and 48 cloth napkins for $\$ 8.99$. The store also offered a full party set that included everything she needed plus extras such as bowls, a table cloth, and spoons for $\$ 124.99$. Which is the better buy if she purchases the fewest number of packages needed to cover the number of guests attending the party? How do you know?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 3 Lesson 2 - Daily Routines - Solve It! Problems (pairs)

One per student
Colabora con tu compañero para resolver el problema.

## Problema 3:

Lupita necesitaba platos de papel, tazas, utensilios de plástico y servilletas para sus 36 invitados. Pudo comprar 15 platos por $\$ 11.95$, 15 tazas por $\$ 7.89,20$ tenedores por $\$ 3.49,20$ cuchillos por $\$ 3.49$ y 48 servilletas de tela por $\$ 8.99$. La tienda ofrecía, además, un juego completo para fiesta que incluía todo lo que Lupita necesitaba, más cosas extra, como tazones, un mantel y cucharas por $\$ 124.99$. ¿Cuál es la mejor compra si compra el menor número de paquetes necesarios para cubrir el número de invitados que asisten a la fiesta? ¿Cómo lo sabes?

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |

Unit 3 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materials:

None for this activity

## Task:

Jonathan had a half yard of fabric from which he needed to cut eighth yard pieces. How many eighth yard pieces will Jonathan cut from the half yard piece? (Draw a picture.)
$X$ Marks the Spot

| Solve for $x$ in these two equations. |  |
| :--- | :--- |
| $\mathbf{( 7 x + 5 ) - ( \mathbf { 2 x - 9 } ) = \mathbf { 7 9 }}$ | $\mathbf{( 7 x + 5 )}$ <br>  <br> $(\mathbf{2 x - 9 )}$$=\mathbf{7 9}$ |
|  |  |

Unit 3 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materiales:

Ninguno para esta actividad
Tarea:
Jonathan tenía media yarda de tela de la que necesitaba cortar piezas de un octavo de yarda. ¿Cuántas piezas de un octavo de yarda Jonathan cortará de la pieza de media yarda? (Dibuja una imagen).

## $X$ Marca el sitio

| Resuelve para $x$ en estas dos ecuaciones: |  |
| :---: | :---: |
| $(7 x+5)-(2 x-9)=79$ | $\begin{array}{r} (7 x+5) \\ -(2 x-9) \\ =79 \end{array}$ |

```
Literature Selection
    Where the Sidewalk Ends
    (poem - HECTOR THE
    COLLECTOR, p 46)
    by Shel Silverstein
    "Chencho Lista, El
    colectionista" (p. 46)
```


## Materials

- Vocabulary word wall
- Collector's box
- Broken items for the box some that are beyond repair, some that could be repaired (enough items to fill the Collector's box about quarter full)
- Sentence Stem: If I were a collector, I would collect...
- BLM Version of "Hector the Collector" with visuals
- BLM Store Circular - 2 per student


## Literature Vocabulary

swapped
traded
collector
gypsies

## Math Vocabulary

ratio
equivalent
rate
unit rate
percent of
discount
tip

## DDI Colloquialisms

Mini-lesson on Colloquialisms

- gatlin’
- 'lectric


## ELPS (English Language Proficiency Standards - TX) <br> 2D, 2E, 2I, 3D, 3E, 3H, 4J. 4K

## Unit 3, Lesson 2 Classroom Lesson

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Understand the concept of discounts.


## Reading Objective:

- Infer the meaning of a poem and the author's purpose.


## Language Objectives:

- Identify synonyms to increase vocabulary.
- Find words that are in the same "family" and use them to talk about a poem.
- Write a paragraph about a collection.


## BEFORE READING

Building Background - Vocabulary \& Literature
Show students the title of the Shel Silverstein poem they will be reading today: "Hector the Collector."

Ask, "What is a collector?"
Show students the word card, and have volunteers share their understanding of the word. Help the class understand that a collector is a person who gathers things together as a hobby -- things that they enjoy having around them. Add this word card to the word wall.

Ask, "What do you think this poem will be about?"
Ask, "Do you see a smaller word inside of collector? What is the root word?"

Help students find the root word, collect. From there, see if students can think of another word in this same "word family" (another word that has the same root). If students don't think of it, provide the word collection.

Explain: Let me write down these three words so you can see them: collector, collect, and collection. A collector is a person who collects, or gathers things. The things they collect are called a collection.

Tell them about a collection you have or had as a child. Then, ask if any of them are collectors. What do they collect? How many $\qquad$ do they have in their collection?


|  | Unit 3, Lesson 2 Grades 7-8 <br> Classroom Lesson - continued $\mathbf{o b o l}_{\mathbf{a}}$ |
| :---: | :---: |
| Guided Reading Groups and | DURING READING <br> Comprehensible Input - Literature \& Vocabulary <br> For this read aloud, the goal is to support students' comprehension of the text by modeling and practicing several reading strategies: <br> - Monitoring for Comprehension <br> - Inferring (including Author's Purpose) |
| Connection <br> If you conduct guided reading groups as part of your balanced literacy instruction, or provide time for independent reading, you can reinforce these same reading strategies. | For this short poem, you will read it aloud without stopping, and then discuss it afterwards with students, using these two reading strategies. <br> Have the poem displayed somewhere the whole class can see, such as written on chart paper, or projected onto a screen. If this is not possible, then pass out copies of Where the Sidewalk Ends from the classroom set right before you begin the read aloud, and have students open up to the poem "Hector the Collector." |
| their comprehension of the more difficult parts: <br> - Monitoring for Comprehension When you ask students questions about the key ideas and details in the text, have them point to specific excerpts from the text. This helps students provide text evidence to support their response. <br> - Inferring: <br> What is the author really saying in this part? <br> When it says , $\qquad$ what does that really mean? | ELLs: There is a lot of vocabulary in this poem that will be unfamiliar for many ELLs. To support their comprehension of this text, you can use the BLM version of the poem, which has images for each of the items that Hector collects. This provides much-needed visual support for ELLs. <br> Read the poem aloud to the students. Afterwards, ask the following discussion questions: <br> Monitoring for Comprehension <br> - Teacher Question: What does Hector collect? Talk with your partner. <br> Regroup the class and have students share. When students talk about the type of things Hector collects, help them refer to specific lines in the poem. (Ex: Hector collects things that are broken. For example, in line 3 it says he collects dolls with broken heads, and in line 7 it says he collects vases that are chipped.) If students don't refer to a specific line, then after they share, ask, "What line or lines from the poem gave you that information?" |
| Why did the author write this? (the author's purpose) | Inferring <br> - Teacher Question: How does Hector feel about his collection? How do you know? Talk with your partner. |
| What message is the author giving readers? <br> How does this character feel? How do you know? | When you regroup the class, have several students share their inferences. Remember that inferring means "reading between the lines" - students need to read between the lines to interpret how Hector feels. (He loves his collection so much that he values it more than things that are worth a lot of money, like gold and diamonds. For him, this collection is a treasure, even though the items aren't worth any money.) |


| Listening Center: Independent Reading <br> Let students listen to "Hector the Collector" in a Listening Center as part of their independent reading time. | Unit 3, Lesson 2 Classroom Lesson - continued Inferring - $\frac{\text { Teacher Question: Why does Shel Silverstein call the people "silly }}{\text { sightless people" in line 24? Talk with your partner. }}$ |
| :---: | :---: |
| Students can also listen to other Shel Silverstein poems at his website: <br> http://shelsilverstein.com/html/bo oks.asp <br> The website is a great way for students to read along as they listen to someone read aloud different poems, and watch the animations that accompany the poems. | Regroup the class and have several students share. <br> Inferring <br> - Teacher Question: Why do you think Shel Silverstein wrote this poem? (What is the author's purpose?) <br> After this discussion of the poem, have the class read the whole poem with you as a Shared Reading. They can do this either by looking at the poem you have displayed, or by reading from their copy of the book. |
| Beginning ELLs: Benefit from listening to these short poems. They can listen to them repeatedly to develop word recognition, and also develop their sense of rhyme in English. <br> Intermediate \& Advanced ELLs: Benefit from listening to a poem repeatedly to develop fluency, and reading along softly when possible. Have students record themselves reading <br> "Hector the Collector" aloud using the podcast tool on MAS Space. Then, they listen to that poem several times, reading along softly. When they feel they've had enough time to practice, they record themselves reading the poem again. Have students compare their two recordings to see how their fluency has improved. <br> You may want to give students the option to post their recordings of the poem on MAS Space. | AFTER READING <br> Practice and Application: Vocabulary and Literature <br> Word Family activity <br> 1. Explain: We listed three words that all have the same root - they are in the same "family": <br> - collector <br> - collect <br> - collection <br> 2. Write the three words inside a house to indicate that they are all part of the same "family," leaving space between the words to write a sentence for each one. You can have each word be on a different "floor" of the house. See example below. Have students do the same on their own papers. <br> 3. Explain the difference between the three words. For example, one is a verb, and the other two are nouns. <br> 4. Have students think of their own sentences for each word based on what happened in the poem "Hector the Collector", and have students write their sentences on their own paper. |



|  | Unit 3, Lesson 2 <br> Classroom Lesson - continued <br> Transition to Math <br> Refer back to the items in the class collector's box. Take each item out and talk about why it is in the box. What is broken on each item? <br> Ask the students if the item could be repaired or should it be recycled? Make two piles of items, one of those items that might be repaired and those that just need to be recycled. <br> Look at the items that could be repaired. If someone had these items and repaired them, could they sell them? Would you expect to pay full price for the items? Probably not - they are used and have been repaired. You would want a big DISCOUNT on the item. What are other times that items are discounted? (sales in the store) <br> Distribute one sale circular to each student. Tell students this is a "could be" circular if Hector chose to repair some of his treasures and sell them at very reasonable prices. You would like for them each to select five items, total the retail or regular prices of the five items, then total the discounted prices. What would the savings be? <br> After all groups have completed their tasks, ask them to discuss the items, retail prices and the discounted prices. <br> - Why do stores have discounted prices? (close out items, lastseason items, near-to-expired items, leaders to bring you into the store) <br> - How are discounts helpful to customers? (saves money) <br> - How can discounts be harmful to customers? (buying things you don't really need just because they are on sale) <br> - What are discounts? (percent off of retail prices) <br> Let students read through the poem again in their small groups. What items in the collector's box could be repaired and sold at discount? Which items probably could be recycled if Hector would part with them? <br> Objectives <br> Review both language and math objectives, making sure students understand how they accomplished each. |
| :---: | :---: |

Unit 3 Lesson 2 - Classroom Lesson
One per student

## Store Circular









Unit 3 Lesson 2 - Math Lesson
One per student

## Repaired Items for Sale (1 of 4)

Work with your peers and teacher to solve these problems during the lesson.

## (Percent of Discount) of the (Retail Price) gives you (money saved)

symbolic-mathematical representation: $\qquad$

## Problem 1:

Hector repaired another stuffed toy. The retail price was $\$ 12.00$ just like the stuffed toys advertisement in his circular. But he's going to give a $70 \%$ discount on the one he repaired. How much will the customer who buys his stuffed toy save?

What do you know? $\qquad$
What do you WANT to know? $\qquad$
How will the percent of discount be represented in this problem? $\qquad$
Visualize it!
$\square$

Use the formula. Substitute the given information and solve for the unknown.

Final Answer: $\qquad$

Unit 3 Lesson 2 - Math Lesson
One per student

## Repaired Items for Sale (1 of 4)

Work with your peers and teacher to solve these problems during the lesson.

> El porcentaje de descuento (del precio de venta) te da como resultado la cantidad ahorrada.

Términos matemáticos: $\qquad$

## Problema 1:

Héctor reparó otro muñeco de peluche. El precio de venta era de $\$ 12.00$, igual que otros muñecos de peluche anunciados en el folleto de ofertas. Él va a ofrecer un $70 \%$ de descuento en este muñeco de peluche. ¿Cuánto ahorrará el cliente que compre este juguete?
¿Qué información conozco?
¿Qué QUIERO saber? $\qquad$
¿Cómo se representará el porcentaje de descuento en este problema?

## ¡Visualízalo!

$\square$

Usa la fórmula. Sustituye lo que sabes y resuélvelo.

Respuesta final: $\qquad$

## Repaired Items for Sale (2 of 4)

Work with your peers and teacher to solve these problems during the lesson.

## (Percent of Discount) of the (Retail Price) gives you (money saved)

symbolic-mathematical representation: $\qquad$

## Problem 2:

Hector read his circular and noticed the stuffed clown toy. He knew this retailed for $\$ 12.00$ and saw that he priced it for sale at $\$ 3.00$. He couldn't remember what discount percent he used to price the toy. Help Hector calculate the percent of discount for the clown stuffed toy.

What do you know? $\qquad$
What do you WANT to know? $\qquad$
How will the percent of discount be represented in this problem? $\qquad$
Visualize it!
$\square$

Use the formula. Substitute the given information and solve for the unknown.

Final Answer: $\qquad$

Unit 3 Lesson 2 - Math Lesson
One per student

## Repaired Items for Sale (2 of 4)

Work with your peers and teacher to solve these problems during the lesson.

## El porcentaje de descuento (del precio de venta) te da como resultado la cantidad ahorrada.

Términos matemáticos: $\qquad$

## Problema 1:

Héctor leyó el folleto de ofertas y vio un payaso de peluche. Sabía que se vendía por $\$ 12.00$ y vio que le había puesto un precio de $\$ 3$. Quería saber qué porcentaje de descuento había usado para ponerle el precio a ese juguete.
¿Qué información conozco? $\qquad$
¿Qué QUIERO saber? $\qquad$
¿Cómo se representará el porcentaje de descuento en este problema?
¡Visualízalo!
$\square$

Usa la fórmula. Sustituye lo que sabes y resuélvelo.

Respuesta final: $\qquad$

## Unit 3 Lesson 2 - Math Lesson

One per student

## Repaired Items for Sale (3 of 4)

Work with your peers and teacher to solve these problems during the lesson.

## (Percent of Discount) of the (Retail Price) gives you (money saved)

symbolic-mathematical representation: $\qquad$

## Problem 3:

Hector fixed a broken toaster and was ready to place it on the shelf for sale. When he researched online, he found that the toaster retailed for $\$ 27.00$. He figured his toaster would sell with a $65 \%$ discount off of the retail price. What sales price does Hector need to display for the toaster?

What do you know? $\qquad$
What do you WANT to know? $\qquad$
How will the percent of discount be represented in this problem? $\qquad$
Visualize it!
$\square$

Use the formula. Substitute the given information and solve for the unknown.

Final Answer: $\qquad$

Unit 3 Lesson 2 - Math Lesson
One per student

## Repaired Items for Sale (3 of 4)

Trabaja con tus compañeros y maestro/a para resolver los problemas durante la lección.

El porcentaje de descuento (del precio de venta) te da como resultado la cantidad ahorrada.

Términos matemáticos: $\qquad$

## Problema 1:

Héctor compuso un tostador dañado y estaba listo para venderse. Cuando investigó en Internet se dio cuenta de que el tostador se vendía por $\$ 27.00$ en Internet. Pensó que su tostador se vendería con un $65 \%$ de descuento del precio de venta. ¿Cuál sería el precio de venta?
¿Qué información conozco?
¿Qué QUIERO saber? $\qquad$
¿Cómo se representará el porcentaje de descuento en este problema?

## ¡Visualízalo!

$\square$

Usa la fórmula. Sustituye lo que sabes y resuélvelo.

Respuesta final: $\qquad$

Unit 3 Lesson 2 - Math Lesson
One per student

## Repaired Items for Sale (4 of 4)

Work with your peers and teacher to solve these problems during the lesson.

## (Percent of Discount) of the (Retail Price) gives you (money saved)

symbolic-mathematical representation: $\qquad$

## Problem 4:

Hector used a $75 \%$ discount on a garden tool to give him a sales price of $\$ 5$. What was the original retail price?

What do you know? $\qquad$
What do you WANT to know? $\qquad$
How will the percent of discount be represented in this problem? $\qquad$
Visualize it!
$\square$

Use the formula. Substitute the given information and solve for the unknown.

Final Answer: $\qquad$

Unit 3 Lesson 2 - Math Lesson
One per student

## Repaired Items for Sale (4 of 4)

Trabaja con tus compañeros y maestro/a para resolver los problemas durante la lección.

El porcentaje de descuento (del precio de venta) te da como resultado la cantidad ahorrada.

Términos matemáticos: $\qquad$

## Problema 4:

Héctor usó un $75 \%$ de descuento en una herramienta para el jardín y le dio un precio de venta de $\$ 5$. ¿Cuál era el precio de venta regular?
¿Qué información conozco?
¿Qué QUIERO saber? $\qquad$
¿Cómo se representará el porcentaje de descuento en este problema?

## ¡Visualízalo!

$\square$

Usa la fórmula. Sustituye lo que sabes y resuélvelo.

Respuesta final: $\qquad$

## Unit 3

Lesson 2 - TV Lesson - Repaired Items for Sale Problem 1 KEY
Remember: percent of discount of the (retail price) gives you the money saved.

Mathematical terms:__ $\%(\mathrm{R})=\mathrm{S}$ $\qquad$

## Problem Number 1

Hector repaired another stuffed toy. The retail price was $\$ 12.00$ just like the stuffed toys advertised in his circular. He's going to give a 70\% discount on this one. How much will the customer who buys this stuff toy save?

- What do I know?

○ _ $\$ 12.00$ is the retail price

- $\quad \mathbf{7 0} \%$ is the percent of discount
- What do I want to know?
- Savings - how much will the customer save? That is our $x$
- How will the percent of discount be represented in this problem? $\qquad$ .70 $\qquad$
\$12.00

Visualize it!


Substitute what you know: $\qquad$ $.70(12.00)=x$ $\qquad$ and solve it.

Use the calculator to solve the problem.

The customer will save $\$ 8.40$.

## Unit 3

Lesson 2 - TV Lesson - Repaired Items for Sale Problem 2 KEY
Remember: percent of discount of the (retail price) gives you the money saved.

Mathematical terms: $\qquad$ $\%(\mathbf{R})=S$ $\qquad$

## Problem Number 2

Hector read his circular and noticed the clown stuffed toy. He knew this had retailed for $\$ 12.00$, and saw that he had priced it for sale at $\$ 3$. He wanted to know what percent of discount he had used to price that toy.

- What do I know?

○ _ $\mathbf{R}=\$ 12.00$
$\circ$ __Sales price $=\$ 3.00$ $\qquad$

- What do I want to know?
- __Percent of Discount $\qquad$
- How will the percent of discount be represented in this problem? $\qquad$ $x$ $\qquad$


Substitute what you know: $\qquad$ $x \%(12)=9$ $\qquad$ and solve it.
(Solve manually to division, then use calculator) $x=0.75$ seventy-five hundredths $=\mathbf{7 5 \%}$ The percent of discount is $\mathbf{7 5 \%}$.

Lesson 2 - TV Lesson - Repaired Items for Sale Problem 3 KEY
Remember: percent of discount of the (retail price) gives you the money saved.
Mathematical terms: $\qquad$ $\%(\mathrm{R})=\mathrm{S}$ $\qquad$

## Problem Number 3

Hector found a broken toaster he fixed and was ready to sell. When he researched online he found that the toaster would retail for $\$ 27.00$. He thought this toaster would sell with a $65 \%$ discount of the retail price. What would the sales price be?

- What do I know?

○ __Retail price $=\$ 27.00$ $\qquad$
○ ___percent of discount $=65 \%$ $\qquad$

- What do I want to know?
- __sales price $\qquad$
- How will the percent of discount be represented in this problem? $\qquad$ .65 $\qquad$


Substitute what you know: $\qquad$ $.65(27)=S$ $\qquad$ and solve it.

Solving for "S" gives you the money saved. Subtract the money saved from the retail to find the sales prices.

The sales prices of the toaster would be $\$ 9.45$

Lesson 2 - TV Lesson - Repaired Items for Sale Problem 4
Remember: percent of discount of the (retail price) gives you the money saved. Mathematical terms: $\qquad$ $\% ~(R)=S$ $\qquad$

## Problem Number 4

Hector used a $75 \%$ discount on a garden tool to give him a sales price of $\$ 5$. What had been the retail price?

- What do I know?

○ _ 75\% discount $\qquad$

- __\$5 sales price $\qquad$
- What do I want to know?

○ __Retail price__x $\qquad$

- How will the percent of discount be represented in this problem? $\qquad$ .75 $\qquad$

Visualize it!

|  | $x$ |
| :--- | :--- |
| Sales price <br> $\$ 5$ | $75 \%$ discount - money saved |
|  |  |

Substitute what you know: $\qquad$ .75 (x) - not enough data to use this equation $\qquad$ and solve it.
You'll need to use real number sense here because there isn't enough data to solve using the money saved equation. We can, however, figure out the percent that the sales price represents of the retail price. QUESTION: If the discount is $75 \%$, what percent of the retail does the sales price represent? $25 \%$ We know that the $\$ 5$ represents $25 \%$ of the Retail price. Solve using $.25 \mathrm{x}=$ $\$ 5$. Work manually until you come to the division problem, then use calculator. Answer is \$20

The retail price of the garden tool was $\$ 20$.

Materials

- Store Circular
- BLM Store Circular Problems 1-2
- BLM Recursive Review Problems Lessons 1-3


## Math Vocabulary

ratio
equivalent
rate unit rate percent of discount tip

## Literature Vocabulary

swapped traded collector
gypsy
gypsies

## ELPS (English Language

 Proficiency Standards - TX) 2E, 2H, 3D, 3H, 4K, 5GUnit 3, Lesson 2

## Math Objectives:

- Find the amount saved when you know the percent of discount and the retail price.
- Find percent of discount when you know the retail price and sales price.
- Find sales price when you know the retail price and the percent of discount.
- Find the retail price when you know the percent of discount and the sales price.
Language Objectives:
- Discuss the various ways to find discount.
- Share ideas with students in your group.
- Explain how to use the Discount Strip to solve discount problems


## Practice and Application

Listen to the explanations of how to use the discount bar model to solve percent discount problems. Be sure that all four problem types are discussed.

You might want to set up the students in teams to work together today on the assignment. Circulate the room asking questions.
QUESTIONS

- How can the discount rectangle help you visualize this problem?
- What data are you trying to find?
- Explain your strategy to me.
- (back page assignment) Explain your problem to me.
- Explain how the rectangle visualization can help you solve this one.
When students have finished, let them share their answers and strategies with the class.


## Recursive Review <br> Use BLM Recursive Review Problems found in Lesson 1.

- Mr. Juarez was printing the signs for his weekly produce sales. What would a customer pay for only 1 pound of apples?


## Cd Writing Topics

Independent Writing Topic
Students will have a daily writing activity which will incorporate the day's focus math vocabulary.

- Explain how the discount rectangular bar model can help you solve this problem:

Marty had a bag of feed. He fed 20\% to his horses and still had 15 pounds left. How many pounds of feed were in the bag when he bought it?

## Objectives

Review the math and language objectives to make sure that they were accomplished and that the students realize how they were

Unit 3 Lesson 2 - Follow-up
One per student

## Store Circular Problems

Work in partners or small groups to complete this activity. Select two items from the BLM Store Circular and find the PERCENT OF DISCOUNT used to figure Hector's sales prices.

Item 1: $\qquad$

## Item 1:

$\qquad$

Select one item from your classroom Hector's Treasure Box. Use the Store Circular to create your own problem to find a retail price when you know the sales price and percent discount.

## Unit 3 Lesson 2 - Follow-up

One per student

## Store Circular Problems

Trabaja con un compañero o un grupo pequeño para completer esta actividad. Elijan dos articulos del BLM Store Circular y busquen el porcentaje del descuento que se usaba para calcular los precios bajos de Hector.

## Artículo 1:

$\qquad$

Artículo 1: $\qquad$

Selecciona un artículo de la caja de tesoso de Hector en la clase. Con el BLM Store Circular, escriban su propia problema para calcular el precio original si saben el precio bajo y el porcentaje del descuento.

| Materials | Unit 3, Lesson 2 Grades 7-8 |
| :---: | :---: |
| - 2 paper towels | Snack Fractions |
| - 6 pieces of beef jerky All items above per partner pair <br> - BLM Beef Jerky-Snack | Students should wash their hands before this activity if using food items. |
| Fractions | Snack Fractions |
| Math Objectives <br> - Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. | Students will continue to use what they've learned about fractions, decimals, ratio and proportion to solve a few problems. Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack. |
| - Convert between fractions, decimals, whole numbers and percents. | Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, extend: |
| - Use division to find unit rates and ratios in proportional relationships such as (speed, density, price, recipes, and (student-teacher ratios). | QUESTIONS <br> - Explain one strategy for finding the approximate original dimensions if that beef shrank $15 \%$. <br> - How can you find the area comparison? |
| - Estimate and find solutions to application problems involving percent. | Finally, let them share the jerky with a partner. |
| Language Objectives <br> - Discuss how ratios and proportions can be used to solve real-world problems. | Snack Fraction Journal Writing: BLM Beef Jerky Snack Fractions Explain how you compared the areas. <br> Objectives: Review the objectives with the class, making sure they understand how they achieved each. |
| Math Vocabulary ratio equivalent rate unit rate percent of discount tip |  |
| Literature Vocabulary <br> swapped <br> traded <br> collector <br> gypsy <br> gypsies |  |

One per student

## Beef Jerky - Snack Fractions

## What did it measure before it was dried?

Beef jerky is made from long strips of meat that that have been marinated, then dried for 6 to 8 hours in a low-heat oven or smoke house. In the drying process, the meat shrinks about $15 \%$ of the original dimensions.

Measure one strip of your half of the jerky.

long $\qquad$ cm wide $\qquad$ cm

Using the measures above, what would the original measures (approximate) be of the beef strip used to make this particular piece of jerky? Draw a diagram of your portion and show your strategy.

How does the area of this portion of your fractional part of the snack compare to its approximate area before it was dried out? Show your work.

## Unidad 3 Lección 2 -

Una por estudiante

## Carne seca - Fracciones de refrigerios

## ¿Cuánto medía antes de secarla?

La carne seca se hace con largas tiras de carne que han sido marinadas y luego secadas de 6 a 8 horas en un horno a fuego bajo o en un
ahumadero. En el proceso de secado, la carne se encoge cerca de un $15 \%$ de sus dimensiones originales.

Mide una tira de tu mitad de carne seca.
largo $\qquad$ cm
ancho $\qquad$ cm

Utilizando las medidas anteriores, ¿cuáles serían las medidas originales (aproximadas) de la tira de carne usada para hacer esta pieza particular de carne seca? Dibuja un diagrama de tu porción y muestra tu estrategia.
¿Cómo se compara el área de esta porción de tu parte fraccionaria del refrigerio con su área aproximada antes de que se secara? Muestra tu procedimiento.

Unit 3 Lesson 2 - Family Fun


Dear $\qquad$ ,

We read the poem Hector the Collector by Shel Silverstein in the book Where the Sidewalk Ends.

The math ideas we used from this poem were...
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$

These math concepts can be used in my daily life when...
$\qquad$
$\qquad$
$\qquad$

Sincerely,

Unit 3 Lesson 2 - Family Fun
Querido/a $\qquad$ ,

Hoy leimos el poema "Chencho lista, el colleccionista" por Shel Silverstein en el libro Donde el camino se corta.

Las ideas matemáticas del poema son...
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Estos conceptos se pueden aplicar a la vida diaria cuando
$\qquad$
$\qquad$
$\qquad$

Atentamente,

Materials

- BLM Solve It! Problem 4-5
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 1-3 CGI Where the Sidewalk Ends (listed in Lesson 1)


## Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 3-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.

Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.


## Math Vocabulary

ratio
equivalent
rate
unit rate
percent of
discount
tip
Literature Vocabulary
swapped
traded
collector
gypsy
gypsies

## Assessment Items

Students are introduced to and practice the skills necessary for success on the following assessment items: 1, 2, 3, 6, 9

TEKS for this Unit
$7^{\text {th }}-7.2, \mathrm{D} ; 7.3 \mathrm{~A}$;
$8^{\text {th }}-8.2 \mathrm{AB} ; 8.3 \mathrm{~B}, 8.5 \mathrm{~A}$
ELPS (English Language
Proficiency Standards - TX)
2C, 2D, 2E, 2I, 3D, 3E, 4F, 5G
Unit 3, Lesson 3
Daily Routine
Grades 7-8

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - length
- Lesson 2 - capacity
- Lesson 3 - omit

Solve It! Multi-step problem solving

- Lesson 1 - threes, related problems
- Lesson 2 - pairs, 3-step problem
- Lesson 3 - pairs, 3-step problem


## Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot


## $X$ Marks the Spot

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot


## CGI

- Lesson 1 - rate, measurement division
- Lesson 2 - rate, multiplication (assessment item 7)
- Lesson 3 - price, partitive (assessment item 6)

The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits.

## OPTIONAL

Target Number

- Lesson 1 - Target Number 25
- Lesson 2 - Target Number 50
- Lesson 3 - Target Number 75


## Money Matters

(If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.)

## Unit 3 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per student
Solve your own problem today, showing your work. Verify your partner's problem solution when you both finish your own. Discuss your work.

## Partner \#1 - Problem 4:

Lupita's party was a huge success! She decided to hire a server to tend to the buffet table and drinks so she could visit with her friends. The server charged $\$ 3.75$ per guest. She had planned for 36 people but only $75 \%$ of the invited guests were there. However, 2 families brought 3 additional guests each. Lupita was so pleased with the server she gave her a $30 \%$ tip. How much did she pay the server altogether?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 3 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per student
Hoy, resuelve tu propio problema, mostrando el procedimiento. Verifica la solución de tu compañero cuando ambos terminen de hacerlo por sí mismos. Hablen sobre su trabajo.

## Compañero \# 1 - Problema 4:

¡La fiesta de Lupita fue todo un éxito! Decidió contratar a una camarera para que sirviera la mesa del bufé y las bebidas para que ella pudiera estar con sus amigos. La camarera cobró $\$ 3.75$ por invitado. Lupita había planificado que asistieran 36 personas, pero solo el $75 \%$ de los invitados estuvieron allí. Sin embargo, 2 familias llevaron 3 invitados adicionales cada una. Lupita estuvo tan satisfecha con la camarera que le dio un $30 \%$ de propina. ¿Cuánto le pagó a la camarera en total?

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |

## Unit 3 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per pair
Solve your own problem today, showing your work. Verify your partner's problem solution when you both finish your own. Discuss your work.

## Partner \#2 - Problem 5:

Lupita wanted each of her friends to leave with a little gift from the party. She found silver personalized key chains online for $\$ 13$ apiece. She purchased 36 of them, but bought 8 extra (not personalized) key chains in case extra guests arrived. Since $75 \%$ of her guests attended, plus the additional 6 that tagged along with the 2 families, she had enough gifts to hand out. What did she spend on the gifts that were given out at the party? *Hint-Be careful here...Don't forget that some of the gifts are personalized, meaning their name or initials were printed on them.

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unidad 3 Lección 3 - Rutinas diarias - ¡Resuélvelo! Problemas (Parejas)

Una por pareja
Hoy, resuelve tu propio problema, mostrando el procedimiento. Verifica la solución de tu compañero cuando ambos terminen de hacerlo por sí mismos. Hablen sobre su trabajo.

## Compañero \# 2 - Problema 5:

Lupita quería que cada uno de sus amigos se fuera de la fiesta con un pequeño regalo. Encontró llaveros personalizados de plata en línea por $\$ 13$ cada uno. Compró 36 llaveros, pero compró 8 extra (no personalizados) en caso de que fueran invitados extra a su fiesta. Dado que asistió el $75 \%$ de los invitados, más los 6 que fueron con las 2 familias, tenía suficientes regalos para entregar. ¿Cuánto gastó en los regalos que entregó en la fiesta? *Pista - Ten cuidado aquí...No te olvides que algunos de los regalos eran personalizados, es decir, tenían impresos los nombres o las iniciales.

| Solución del problema <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |

Unit 3 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materials: <br> None for this activity

## Task:

Alejandro saw this sign at the market. How much would be pay for one box of his favorite snack crackers?

$X$ Marks the Spot

| Solve for $x$ in these two equations. | $\mathbf{2 ( x - 3 ) + \mathbf { 3 } ( \boldsymbol { x } + \mathbf { 4 } ) = \mathbf { 3 6 }}$ |
| :--- | :--- |
| $\mathbf{8 x - 4 = 7 \boldsymbol { x } - \mathbf { 1 }}$ |  |
|  |  |

Unit 3 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot

## Fraction Action

## Materiales: <br> Ningunas

Tarea:
Alejandro vio esta etiqueta en el Mercado.¿Cuánto pagariía por una caja de sus galletas favoritas?

$X$ Marks the Spot

| Resuelve para el valor de $x$ en estas ecuaciones. |  |
| :--- | :--- |
| $\mathbf{8 x}-\mathbf{4}=\mathbf{7 x} \boldsymbol{- 1}$ | $\mathbf{2 ( x - 3 ) + 3 ( x + 4 ) = \mathbf { 3 6 }}$ |
|  |  |
|  |  |


| Literature Selection |
| :--- |
| Where the Sidewalk Ends |
| (poem - THE GYPSIES ARE |
| COMING, p 50) |
| by Shel Silverstein |
| Que vienen las gomías, p. 50 |
|  |
| Translation note: The word |
| "gypsy" is translated as |
| "bogeyman." That translation is |
| used on the Spanish cards. |
| Materials |
| - Word wall cards |
| - World wall map |
| - Pictures of real gypsies |
| http://photobucket.com/images/g |
| - ypsies/ |
| - Family Fun Game Board (1/pair) |
| - Family Fun Game Cards (1/pair) |
| - Game markers (1/ student) |
| - Answer Key (1/pair) |
| - Game Movement Cards (1/pair) |
| - 4-function calculators |
| (1/student) |

## Literature Vocabulary

## swapped

traded
collector
gypsies
gypsy
Math Vocabulary
ratio
equivalent
rate
unit rate
percent of
discount
tip

## Dd Research

Research the origins of the Bogeyman (bogieman, boogeyman, boogieman)

Research gypsies.

ELPS (English Language Proficiency Standards - TX)
2C, 2E, 2H, 2I, 3E, 3F, 3J

## Unit 3, Lesson 3 <br> Classroom Lesson <br> Grades 7-8

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Solve percent problems in a game format.

Reading Objectives:

- Compare fact and fiction.
- Infer the meaning of a poem and the author's purpose.

Language Objectives:

- Identify synonyms to increase vocabulary.
- Use different word wall words to talk about the literature you've read so far.


## BEFORE READING

Building Background - Vocabulary \& Literature
Fact/Fiction T-Chart activity
Ask: Did your parents ever tell you tales of a Boogieman who would come at night and take away naughty children? Or perhaps el Hombre de la Bolsa, or el Hombre del Saco? Does anyone have another fanciful character they've heard about? (Let students share.)

Explain: These characters and others like them are common characters all over the world. Why do you suppose parents would tell their children of such a character? (Accept all reasonable answers.)

Ask, "Are these characters real or make-believe?"
Add the characters students have brainstormed to the "FICTION" side of a FACT / FICTION T-chart (see example below).

| FACT | FICTION |
| :--- | :--- |
|  | Boogieman (or bogeyman) <br> La gomía |

## Comprehensible Input - Vocabulary \& Literature

Show students the illustration that goes with the poem "The Gypsies are Coming."



## Guided Reading Groups and Independent Reading Connection

If you conduct guided reading groups as part of your balanced literacy instruction, or provide time for independent reading, you can reinforce these same reading strategies.

After students have read the text on their own, to improve their comprehension of the more difficult parts:

- Monitoring for Comprehension When you ask students questions about the key ideas and details in the text, have them point to specific excerpts from the text. This helps students provide text evidence to support their response.
- Inferring:

What is the author really saying in this part?

When it says $\qquad$ , what does that really mean?

Why did the author write this? (the author's purpose)

What message is the author giving readers?

## Listening Center: Independent Reading

Let students listen to "The Gypsies are Coming" in a Listening Center as part of their independent reading time.

Students can also listen to other Shel Silverstein poems at his website:
http://shelsilverstein.com/html/boo ks.asp
The website is a great way for students to read along as they listen to someone read aloud different poems and watch the animations that accompany the poems.

## Unit 3, Lesson 3 <br> Grades 7-8 <br> Classroom Lesson - continued <br> 

Have the poem displayed somewhere the whole class can see, such as written on chart paper, or projected onto a screen. If this is not possible, then pass out copies of Where the Sidewalk Ends from the classroom set right before you begin the read aloud, and have students open up to the poem "The Gypsies are Coming."

Read the poem aloud to the students.

## Monitoring for Comprehension

- Teacher Question: What are the gypsies doing in this poem? Talk with your partner.

Regroup the class and have students share. When students talk about what the gypsies are doing, help them refer to specific lines in the poem. (Ex: In line 3, it says that the gypsies are buying children and taking them children. In lines 4-8 we begin to learn that they pay different amounts of money for different children.) If students don't refer to a specific line, then after they share, ask: What line or lines from the poem gave you that information?

## Inferring

- Teacher Question: Why do the gypsies pay different amounts of money for different children? Talk with your partner.

When you regroup the class, have several students share their inferences. Remember that inferring means "reading between the lines" - students need to read between the lines to understand that certain characteristics (or traits) in children are more "desirable" than others for the gypsies, so they pay according to what traits they want in the children.

Show students the following chart with the quantities of money, and have them refer to the poem to help you fill in the characteristics, or traits, that are worth each amount of money. See the example below. Point out to students that all of the words on the chart are adjectives. For adjectives students don't understand, give them a synonym to clarify the meaning and add the synonyms to the chart - preferably in green, as you did with the synonym web.

| 0¢ | $1 ¢$ | 5¢ | 11¢ | $20 ¢$ | 25¢ | $30 ¢$ | 40¢ | 50¢ | 80¢ | $\begin{aligned} & \$ 1 . \\ & 00 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bad | $\begin{gathered} \hline \text { mea } \\ \mathrm{n} \end{gathered}$ | sad | dirty | lean | weak | clean | $\begin{gathered} \text { happ } \\ \text { y } \end{gathered}$ | fat | $\begin{gathered} \hline \text { husk } \\ \mathrm{y} \end{gathered}$ | $\begin{gathered} \text { mee } \\ \mathrm{k} \end{gathered}$ |
|  |  |  |  |  |  |  |  |  | stro <br> ng <br> mus <br> cula | $\begin{gathered} \text { timi } \\ \text { d } \\ \text { shy } \end{gathered}$ |

Beginning ELLs: Benefit from listening to these short poems. They can listen to them repeatedly to develop word recognition, and also develop their sense of rhyme in English.

Intermediate \& Advanced ELLs: Benefit from listening to a poem repeatedly to develop fluency, and reading along softly when possible. Have students record themselves reading the poem aloud using the podcast tool on MAS Space. Then, they listen to that poem several times, reading along softly. When they feel they've had enough time to practice, they record themselves reading the poem again. Have students compare their two recordings to see how their fluency has improved.

## Unit 3, Lesson 3 <br> Classroom Lesson - continued

ELLs: You can add a quick sketch underneath certain adjective to help ELLs understand the difference between these words.

## Inferring

- Teacher Question: What kind of message is Shel Silverstein sending the reader with his last line in the poem? Talk with your partner.
Regroup the class and have several students share.
- Teacher Question: Why do you think Shel Silverstein wrote this poem? (What is the author's purpose?)


## Synthesizing

- Teacher Question: We know that gypsies are a real group of people who live around the world. How do you think gypsies might feel about this poem? How would you feel if this poem were about a group of people you belong to?

After this discussion of the poem, have the class read the whole poem with you as a Shared Reading. They can do this either by looking at the poem you have displayed, or by reading from their copy of the book.

## AFTER READING

## Partner Reading

Have students read the poem several times with a partner. They can alternate lines or stanzas to share the reading. Each time they reread the poem with their partner, they can change who reads which lines.

## Connecting Words Activity

If time permits, you may want to use a Connecting Words activity to help students review all of the word wall words they have learned so far in the unit.

Take any two words off of the word wall (or point to any two words), and challenge students to try to use both words in a sentence. Have students try this first with their partner, and then ask a few students to share with the class.

Variations: You can have student volunteers choose the words from the wall that they want their classmates to connect. You can also create an extra challenge by having students connect three words in a sentence, or even four words.


| Materials <br> - BLM Tipping to Save <br> - 4-function calculators | Unit 3, Lesson 3 Grades 7-8 <br> Math Lesson 6is |
| :---: | :---: |
| Math Vocabulary <br> ratio <br> equivalent <br> rate <br> unit rate <br> percent of <br> discount | Math Objectives: <br> - Calculate tips. <br> Language Objectives: <br> - Discuss tipping and how to use percent to calculate tips. <br> Building Background |
| tip <br> Literature Vocabulary <br> swapped <br> traded <br> collector <br> gypsy <br> gypsies | Another time when we use percent is in calculating a tip for someone who has performed a service for you - wait staff in a restaurant are the most frequently thought of when you think of tipping; but there are other times as well. <br> The whole idea of the gypsies coming and taking children away is upsetting to me; so what if we PAID the gypsy and gave her a tip on top of the payment so she would NOT take the children? That's a little farfetched, but then so is a gypsy taking children at night in a big sack. |
| ELPS (English Language Proficiency Standards - TX) 2F, 2G, 2I, 3C, 3E, 3H, 3J | So, let's learn about tipping and at the same time save a few imaginary children from an imaginary person with a sack. <br> Comprehensible Input <br> To calculate a tip, you first have to know the percent you want to pay them. Take a look at the Tipping to Save sheet. First of all, I've chosen not to pay the same percent for all of the prices. Talk to a partner and decide what my pattern is. (pause) |
| Teacher Note <br> Please facilitate this partner discussion - it will be short, but should be active. | You may have seen other patterns, but the scale I used was prices under 20 cents were to be tipped $15 \%$. Prices more than 50 cents would be tipped $25 \%$, and prices between and including 20 cents to 50 cents would be tipped $20 \%$. |
| Discussion <br> As students quickly discuss, listen to their use of the math vocabulary. Encourage proper usage. | Now, let's look at the language of tipping. Let's take our first price of 50 cents. I want to tip the Gypsy $20 \%$ OF the 50 cent price. |
|  | As we saw in our other percent problems, OF is a term which translates into multiplication mathematically. So talk to your partner about how you would write an equation for 20 percent of 50 cents equals... <br> Remember, you need to represent the percent in a way that it can be used for computation. (pause) <br> The mathematical translation is $.20(.50)=$ |
|  | We want to write that equation in our "tip" column on our record sheet, leaving room for the answer (do so). |
|  |  |

\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Unit 3, Lesson 3 } \\
\text { Math Lesson - continued } \\
\text {--------------------------------------------------------------- } \\
\text { When you multiplied on the calculator, you probably got an answer like } \\
\text { this (do on calculator which shows .1). } \\
\text { What does that represent? (1-tenth) } \\
\text { Is that a representation that we usually use for money? (No, but it can } \\
\text { be easily converted to money.) } \\
\text { Money is usually represented in hundredths. What is the hundredth }\end{array}
$$ <br>
equivalent of one-tenth? (10-hundredths) <br>
What money value does ten-hundredths or .10 represent? (ten cents) <br>

OK, so a 20\% tip on fifty cents is a dime, or 10 cents. That's the tip.\end{array}\right\}\)| Now, what would we pay the Gypsy? Remember, my ideal is to pay her |
| :--- |
| the price plus the tip, so what do we do now? (add the tip to the price) |
| Write the mathematical sentence for adding the tip to the price in the |
| TOTAL column (.10 + .50 = .60). So the total is sixty cents. |
| Let's continue |
| (Complete the page, asking questions and having students respond |
| either to a partner or to the class.) |
| It seems to me that we have solved several problems. |
| 1. We have certainly practiced calculating tips and totals. |
| 2. We have saved many imaginary children. |
| 3. And we have sent the Gypsy away happy with her money. |

Unit 3 Lesson 3 - Math Lesson
One per student

## Tipping to Save

Work with your teacher and class to calculate tips and fill in the chart below.

| Type | Price | \% of Tip | Tip | Total |
| :---: | :---: | :---: | :---: | :---: |
| Fat ones | .50 | $20 \%$ |  |  |
| Lean ones | .20 | $20 \%$ |  |  |
| Dirty ones | .15 | $15 \%$ |  |  |
| Clean ones | .30 | $20 \%$ |  |  |
| Mean ones | .05 | $15 \%$ |  |  |
| Husky ones | .80 | $25 \%$ |  |  |
| Weak ones | .25 | $20 \%$ |  |  |
| Noisy ones | .01 | $15 \%$ |  |  |
| Meek ones | 1.00 | $25 \%$ |  |  |
| Happy ones | .40 | $15 \%$ |  |  |

Unit 3 Lesson 3 - Math Lesson
One per student

## Tipping to Save

Work with your teacher and class to calculate tips and fill in the chart below.

| Tipos de niños | Precio | \% de propina | Propina | Total |
| :---: | :---: | :---: | :---: | :---: |
| Gordos | .50 | $20 \%$ |  |  |
| Flacos | .20 | $20 \%$ |  |  |
| Sucios | .15 | $15 \%$ |  |  |
| Limpios | .30 | $20 \%$ |  |  |
| Roñosos | .05 | $15 \%$ |  |  |
| Voluminosos | .80 | $25 \%$ |  |  |
| Ojerosos | .25 | $20 \%$ |  |  |
| Escandalosos | .01 | $15 \%$ |  |  |
| Buenos | 1.00 | $25 \%$ |  |  |
| Dichosos | .40 | $15 \%$ |  |  |

Materials

- Family Fun Generic Game Board
- Family Fun Movement cards
- Unit 3 Family Fun-Problem Cards
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 3 Family Fun Special $7^{\text {th }}-$ $8^{\text {th }}$ Game Instructions
- game markers
- 4-function calculator
- BLM Recursive Review Problems Lessons 1-3

Math Vocabulary
ratio
equivalent
rate
unit rate percent of discount
tip
Literature Vocabulary swapped traded collector gypsy gypsies

ELPS (English Language Proficiency Standards - TX) 2G, 2I, 3D, 3E, 3G, 4F, 4G, 5G

## Technology Option

Students may use a 4-function calculator to save time with calculations.

## Unit 3, Lesson 3 <br> Grades 7-8 <br> Follow-up <br> \%

Math Objectives:

- Solve problems involving calculating tips.


## Language Objectives:

- Discuss problem solving strategies with peers.
- Explain your problem solving strategy to peers.


## Practice and Application

Direct students to play the Family Fun Game again, this time using the cards that involve calculating tips.

## QUESTIONS

- What does this number represent?
- What does your answer represent?
- Does your solution answer the question?


## Recursive Review

Use BLM Recursive Review Problems found in Lesson 1.

- Angel made a model of a B-52 Bomber with a scale of 1:144. If the actual plane measures 159 ft . long with a wingspan of 185 ft ., what are the dimensions on Angel's model rounding to the nearest tenth of a foot?


## OD Writing Topics

## Independent Writing Topic

Students will have a daily writing activity which will incorporate the day's focus math vocabulary.

- Explain how to calculate tip.


## Family Fun Game

Students will take the Family Fun game materials home to teach and play with their families.

## Objectives

Review the math and language objectives to make sure that they were accomplished and that the students realize how they were accomplished.


Unit 3 Lesson 3 - Snack Fraction
One per student

## Raisin Bread and Bananas - Snack Fractions

## What would the whole loaf measure?

Your portion of the raisin bread is one piece out of $\qquad$ in the whole loaf.

Measure the dimensions of one piece of bread in centimeters.
length $\qquad$ cm width $\qquad$ cm
height $\qquad$ cm


What would a whole loaf measure?

The record for the longest loaf of bread is 1,211.6 meters and was baked in Portugal on July 10, 2005. Using measurements from your slice of raisin bread to determine the proportion, what would the width of a loaf of raisin bread be if baked that long? (Assuming the width grew in proportion to the length.)

How does the volume of this portion of your fractional part of the snack compare to its whole approximate volume before it was cut into slices?

## Pan de pasas y plátanos - Fracciones de refrigerios

## ¿Cuánto mediría la hogaza entera?

Tu porción del pan de pasas es una pieza
de $\qquad$ en la hogaza entera.

Mide las dimensiones de una pieza de pan en centímetros.

| longitud <br> anchura <br> altura <br> _ | cm |
| :--- | :--- |


¿Cuánto mediría una hogaza entera?

El récord para la hogaza de pan más larga es $1,211.6$ metros, y se horneó en Portugal el 10 de julio de 2005. Usando tus medidas, ¿cuál sería la anchura de la hogaza del pan de pasas si se la hornea de ese largo? (Asumiendo que la anchura crece en proporción a la longitud).
¿Cómo se compara el volumen de esta porción de tu parte fraccionaria del refrigerio con su volumen total aproximado antes de que se lo cortara en rebanadas?

## Unit 3 Lesson 3 - Family Fun

Dear $\qquad$ ,

We learned a few more skills in math involving calculating tips!

Here are some strategies I'll need to solve the problems in this unit's game today...
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Sincerely,

Querido/a $\qquad$ ,
¡Aprendimos mas habilidades matemáticas en cuanto calcular propinas!

Estas son algunas de las estrategias que necesito hoy para resolver los problemas en el juego de la unidad...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Atentamente,


BLM All-School Unit 3, Lesson 3
Family Fun Game Answer Key

| Problem Letter | Kinder | 1-2 | 3-4 | 5-6 | 7-8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 10 apples | $5+6=11$ | $0.25,0.55,0.75$ | 2.45 feet | 20 \% discount |
| B | 3 lights | $12-3=9$ | 6 | $\begin{gathered} 3.75 \text { cups or } \\ 3 \frac{3}{4} \text { cups } \end{gathered}$ | $\begin{gathered} \$ 69.30 \text { sales } \\ \text { price } \end{gathered}$ |
| C | 9 pies | 33 | 35 | 92 feet | \$4.80 saved |
| D | The bottom group | 61 | 50 feet | 4763.76 miles | 28 lbs |
| E | The top group | 49 | 3 eggs | \$180.51 | \$498.75 |
| F | The bottom group | 43 | 3 bags | 129.7 oz | Approx 33\% |
| G | 15 | 32 wild things | $4 \times 3$ or $3 \times 4$ | \$37.60 | \$220.00 retail |
| H | 7 | 4 wild things | There are 2 equal groups of 5 stars | \$14.25 | 17 pounds |
| I | 8 | 14 stayed | $\begin{gathered} 55 / 10 \text { or } \\ 51 / 2 \\ \hline \end{gathered}$ | \$11,250 earned | 40\% discount |
| J | nickel | (divide into fourths) | 3.12 | \$456.00 | $\begin{gathered} \$ 181.13 \text { or } \\ \$ 181.14 \end{gathered}$ |
| K | dime | There are 2 equal pieces | $\begin{aligned} & 7 \times 8=56 \\ & 8 \times 7=56 \\ & 56 \div 7=8 \\ & 56 \div 8=7 \end{aligned}$ | \$234.06 | \$5.40 tip |
| L | quarter | 9 | Any model that shows 4 groups of 5 items | \$14.85 | \$303.75 total |
| M | penny | 6 more | 10 and 5 hundredths | False, inverted ratio | \$9.68 spent |
| N | Any set with 9 objects in it | 6 fewer | Use paper and pencil to model an equivalent fraction such as 2/4, 3/6, 4/8 | True, scale factor by half | \$26.45 spent |
| 0 | Any set with 12 objects in it | 3 were climbing | $\begin{aligned} & 3 \text { tenths, } 0.3 \text {, is } \\ & \text { UNshaded } \end{aligned}$ | 54 students: 1 bus | approx. $33 \%$ tip |
| $\mathbf{P}$ | These are halves | 2 fewer | 5 rows of 8 marks see special instructions | 36 strikes | \$19.80 gratuity (tip) |
| Q | There are 2 equal pieces | $3+7$ | First marked benchmark line See special instructions | $\frac{1}{3} \text { or } \frac{2}{6} \text { or } \frac{4}{12}$ | $\$ 45.80$ bill before tip |
| R | 18 objects Number card 18 | $\begin{aligned} & 6+7=13 \\ & 7+6=13 \\ & 13-7=6 \\ & 13-6=7 \end{aligned}$ | Between the 0.75 and the 1 , but much close to 1 See special instructions | $1 \frac{2}{9}$ | \$575.00 total |




Units 3 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class
Print on goldenrod paper.

## Family Fun - Problem Cards (1 of 2)

| A. <br> A bottle of water cost $\$ 1.25$ last week. This week the water cost $\$ 1.00$. What is the percent of discount for the water? | B. <br> Margo wanted a DVD player. The retail price on the player was $\$ 99$. This week it is on sale for $30 \%$ discount. What is the sales price of the DVD player? | C. <br> Makala paid $\$ 48$ for a bag of bird seed. The next week when she bought the seed, it was on sale for $10 \%$ off. How much did Makala save? |
| :---: | :---: | :---: |
| D. <br> Sergio opened a new bag of dog food last week for his dogs. He used $25 \%$ of the food and still had 21 pounds of food left. How much food had been in the full bag? | E. <br> Palmer earned money on her savings account at the bank. She put $\$ 475$ in the bank and didn't touch it for 1 year. If she earned $5 \%$ on her money, how much money did she have at the end of the year? | F. <br> The daily blue plate special at the diner was $\$ 5.95$. The dinner was also offered on the regular menu for $\$ 8.95$. What is the percent of discount for the blue plate special? |
| G. <br> Mr. Gregorio's Skate Shop has a skateboard on sale for $\$ 55$. He has discounted that board $75 \%$. What was the retail price on the board? | H. <br> The Baker opened a new bag of flour on Monday. By Wednesday he had used $33 \%$ of the bag and there were 17 pounds left. How many pounds of flour had been in the full bag? (Round to nearest $10^{\text {th }}$ ) | I. <br> Mrs. Barker read the grocery circular and saw that grapes that had been $\$ 2.00$ a pound were now $\$ 1.25$ a pound. What was the percent of discount for the grapes? |

Units 2 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class

## Print on goldenrod paper.

Family Fun - Problem Cards (2 of 2)

| J. <br> The meal at the fancy new steak house in town cost $\$ 150.95$. What would the total bill be with a $20 \%$ tip? | K. <br> The meal cost $\$ 21.60$. If Hannah left a $25 \%$ tip, what would the tip be? | L. <br> Farrah charged $\$ 225.00$ to cook for a dinner party. The hostess of the party added a $35 \%$ tip on top of the dinner charge. How much did Farrah receive for the dinner party? |
| :---: | :---: | :---: |
| M. <br> Kristy and Carla visited over coffee at the new place called Cool Beans. Their bill was $\$ 8.42$ and they left a $15 \%$ tip in the tip mug. How much did they spend at the coffee shop total? | N. <br> Casey wanted to leave his barber a $15 \%$ tip. His haircut cost $\$ 23$. What did he spend at the barber shop that day? | O. <br> The meal cost $\$ 60$. What was the percent of the tip if the guests left an additional $\$ 15$ ? |
| P. <br> An $18 \%$ gratuity is automatically added to bills for parties of 8 or more. If 10 guests ate at the restaurant together, what will be the gratuity added to their $\$ 110.00$ bill? | Q. <br> The $25 \%$ tip was $\$ 11.45$. What was the total of the bill before the tip was added? | R. <br> The Rockers paid a $15 \%$ tip of $\$ 75$ for a custom paint job on the trailer that transports their band equipment. What was the cost of the paint job with the tip included? |

## Unidad 3

Lección 3 - Lección para el salón - Tarjetas de problemas del Juego Familiar Divertido para grados 7-8
(Copiar en cartulina vara de oro. Estas son las tarjetas de problemas para grados 7-8).

E. Palmer ganó dinero en su cuenta de ahorros en el banco. Puso $\$ 475$ en el banco y no lo tocó por 1 año. Si ganó un $5 \%$ de su dinero, ¿cuánto dinero tenía al final del año?
G. La tienda deportiva del Sr . Gregorio tiene una patineta en oferta a $\$ 55$. La patineta tiene un descuento de $75 \%$. ¿Cuál era el precio regular de la patineta?
I. La Sra. Barker leyó el folleto de ofertas de comestibles y vio que el precio de las uvas, que había sido antes de $\$ 2.00$ por libra, ahora era de $\$ 1.25$ por libra. ¿Qué porcentaje de descuento tenían las uvas?
B. Margo quería un reproductor de películas DVD. El precio regular de venta del aparato era de $\$ 99$. Esta semana está en oferta con un $30 \%$ de descuento. ¿Cuál es el precio de oferta del reproductor de películas DVD?
D. Sergio abrió una nueva bolsa de alimento para sus perros la semana pasada. Usó $25 \%$ del alimento y todavía le quedan 21 libras de alimento. ¿Cuánto alimento había en la bolsa cuando estaba llena?
F. El platillo especial en el restaurant cuesta $\$ 5.95$. El restaurante también ofrece el menú regular por $\$ 8.95$. ¿Cuál es el porcentaje de descuento del platillo especial?
H. El panadero abrió una nueva bolsa de harina el lunes. Para el miércoles había usado $33 \%$ de la bolsa y quedaban 17 libras. ¿Cuántas libras de harina había en la bolsa antes de abrirla? (Redondea a la decena más cercana)
J. Una cena en el restaurante nuevo cuesta $\$ 140.95$. ¿Cual sería total con una propina de $20 \%$ ?

Leson 3 - Lección para el salón - Tarjetas de problemas del Juego Familiar Divertido para grados 7-8
(Copiar en cartulina vara de oro. Estas son las tarjetas de problemas para grados 7-8).
$\qquad$
O. La comida cuesta $\$ 60$. ¿Cuál sería el porcentaje de la propina si dejaron $\$ 15$ extra?
Q. La propina fue $\$ 11.45$. ¿Cuál fue el total de la cuenta antes de sumar la propina?
L. Farrah cobró \$225.00 para preparer la comida para una fiesta. La anfitriona le dio una propina de 35\%. ¿Cuánto recibió Farrah para preparar la comida?
N. Casey quería dejarle una propina de $15 \%$ al peluquero. EI corte de pelo le costó $\$ 23$.
¿Cuánto gastó en la peluquería ese día?
P. Una propina de $18 \%$ se suma automáticamente a la cuenta para un grupo de 8 o más personas. Si 10 personas comieron en el restaurante juntas, ¿cuál sería la propina que se sumaba a la cuenta de $\$ 110$ ?
R. Los Rockers dejaron una propina de $\$ 75$ o $15 \%$ para un trabajo de pintura de encargo en el remolque que usan para transportar sus instrumentos musicales. ¿Cuál fue el costo del trabajo de pintura con la propina incluída?

## Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions

## Materials:

- Family Fun Generic Game Board
- Family Fun Movement Cards
- Unit 3 Family Fun Problem Cards for grades 7-8 (green)
- Family Fun Answer Key for Unit 1 (all grade bands)
- Unit 3 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions


## Solution Expectations

## Problems A - I

This card set focuses on percent of discount and price. Students may use a bar model to help them visualize the problems and figure out the answers quickly. The model can be used to find any variable in a discount problem situation.

Example: Tori saw a shirt at the store for $\$ 29.98$. The clearance sign said to take an additional $30 \%$ off the ticket price. How much does the shirt cost?


The bar model shows the retail price of the shirt broken into 10 equal pieces. The shaded region represents the $30 \%$ discount. $\$ 29.98$ divided by 10 groups equals $\$ 2.99$. Each "chunk" equals $\$ 2.99$. To find how much the shirt costs, we look at the UNshaded region. 7 groups of $\$ 2.99$ equals $\$ 20.93$. The shirt costs $\$ 20.93$ after the discount.

## Problems J - R

This card set focuses on calculating tips with percentages. The bar model above can be used for this problem set as well.

## Unidad 3 Lección 3 - DIVERSIÓN FAMILIAR

## Instrucciones especiales de juego para $7^{0}-\mathbf{8}^{\mathbf{0}}$

## Materiales:

- Tablero de juego genérico de Diversión Familiar
- Cartas de movimiento de Diversión Familiar
- Cartas de problemas de Diversión Familiar de la Unidad 3 para grados 7-8 (verde)
- Guía de respuestas de Diversión Familiar para la Unidad 1 (todos los grados)
- Instrucciones especiales de juego de Diversión Familiar Unidad 3 para $7^{\circ}-8^{\circ}$


## Expectativas de solución

## Problemas A-I

Este juego de cartas se centra en el porcentaje de descuento y precio. Los estudiantes pueden usar un modelo de barra para que les ayude a visualizar los problemas y formular las respuestas rápidamente. El modelo se puede utilizar para encontrar cualquier variable en una situación de problema de descuento.

Ejemplo: Tori vio una camisa en la tienda a \$29.98. El cartel de liquidación indicaba que se le quitaba un $30 \%$ adicional del precio del ticket. ¿Cuánto cuesta la camisa?


El modelo de barra muestra el precio minorista de la camisa dividido en 10 partes iguales. La zona sombreada representa el $30 \%$ de descuento. $\$ 29.98$ dividido por 10 grupos es igual a $\$ 2.99$. Cada "trozo" es igual a $\$ 2.99$. Para saber cuánto cuesta la camisa, miramos la zona NO sombreada. 7 grupos de $\$ 2.99$ es igual a $\$ 20.93$. La camisa cuesta $\$ 20.93$ después del descuento.

Problemas J - R
Este juego de cartas se centra en calcular propinas con porcentajes. El modelo de barra anterior, también se puede utilizar para este conjunto de problemas.

Resuelve los problemas de repaso recursivo usando cualquier estrategia que elijas.

Math Matters 2014 - In-Home Instruction

## Math Objectives <br> Math Lesson 1

- Find ratio of single coin value to a dollar.
- Find fraction and decimal representation of single coin value out of a dollar.
- Find percent of coin value of a dollar.
- Compare the amount the SMART son had to a dollar and find the percent of a dollar for each swap.
- Find the percent of money missing from the dollar for each swap.


## Math Lesson 2

- Find the amount saved when you know the percent of discount and the retail price.
- Find percent of discount when you know the retail price and sales price.
- Find sales price when you know the retail price and the percent of discount.
- Find the retail price when you know the percent of discount and the sales price.


## Differentiate

Math Lesson 1 - students work with "percent of" problems

Math Lesson 2 - students find the various problem types involved with percent of discount.

## Snack Fraction Notice

All snack fractions are common throughout the grade bands. All grade bands have daily snack fraction activities provided. All snack fractions for a unit in a specific grade band will practice the same set of skills. Therefore, you may choose from any of the three activities. Lesson 1, Dill Pickles is the simplest snack to transport.

Materials

## Math Lesson 1

- BLM Fractions, Decimals, Percents

Math Lesson 2

- BLM Repaired Items for Sale Problems 1-4
- 4-function calculator (optional)


## Family Fun

- Family Fun Generic Game Board
- Family Fun Movement cards
- Unit 3 Family Fun-Problem Cards
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 3 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions
- game markers
- 4-function calculator


## Snack Fractions (Math Lesson 1)

- 1 dill pickle
- 2 paper dessert plates
- 2 paper towels
- 1 plastic knife

All items listed above per partner pair

- BLM Dill Pickle-Snack Fractions


## QUESTIONING

As a result of this lesson, your students should be able to respond to the following:

- What does it mean to find the "percent of" something?
- How can the discount rectangle help you visualize this problem?
- What data are you trying to find?
- Explain your strategy to me.
- Explain your problem to me.
- Explain how the rectangle visualization can help you solve this one.


## Math Vocabulary

ratio, equivalent, rate, unit rate, percent of, discount, tip

## CGI Problem

- All "price" problems.


## Journal Writing

Explain how to find the percent of a quantity and how this relates to solving the various types of discount problems.

## Family Fun

A generic game board is being used in all grade levels, differentiated by game cards specific to the grade level. Students use problem cards with discount and tip word problems.

## Snack Fractions

Students divide their snack in half and calculate various percentages based on their portion.

## Assessment

Students will be introduced to and practice skills for items $1,2,3,7,8,9$.
Grades $7-8$
Overview
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete
lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit 4 Lesson 1 Daily Routine $30-45 \text { minutes }$ | Mid-assess summer skills | Mid-assess summer skills | Administration of Mid-assessment |  | - Mid-assessment 1 per student |
| Classroom Lesson 1 30 min. - 1 hour | Compare the perimeter to the area in specific arrays made from tiles. | Read and speak self-created sentences containing vocabulary words. Create a poster of your favorite spaghetti that includes proportions. <br> Make predictions, give rationales, hypothesize. Classify words as parts of speech. | Vocabulary Use vocabulary words to write a creative paragraph. <br> Literature <br> Read literature selection and create spaghetti posters to display around the room. <br> Transition to Math Investigate area and perimeter. | - 16 color tiles per pair | - class set of vocabulary cards <br> - 9x12 manila paper 1 per pair <br> - markers or crayons <br> - tape <br> - labels (nouns, verbs) <br> - sentence strips (1 for each vocabulary word sentence) <br> - BLM Mrs. Comfort's Tables <br> - BLM Mrs. Comfort's Tables-Teacher Key |
| Math <br> Lesson 1 <br> 30 minutes | Compare measurements of squares. <br> Work with others to find scale factors for similar squares. | Discuss observations and measurements of shapes and their relationships. Explain scale factors to classmates. <br> Discuss problem solving strategies with classmates. Justify answers regarding similarity among squares. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics Explore concepts of similarity and proportionality through the properties of squares. | - 36 color tiles per student <br> - customary ruler |  |
| Follow-up <br> Lesson 1 <br> 30 min . - 1 hour | Compare measurements of squares. <br> Work with others to find scale factors for similar | Discuss observations and measurements of shapes and their relationships. Explain scale factors to | Students continue to establish data that answers the question: "Are all squares similar?" Justify | - 36 color tiles per student | - BLM Recursive Review Problems Lessons 1-3 |


| (including Snack Fractions) | squares. | classmates. <br> Discuss problem-solving strategies with classmates. Justify answers regarding similarity among squares. | your reasoning. <br> Writing Prompt <br> What is a scale factor and how is it used? |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Snack Fractions Lesson 1 | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density), price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems. | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing kabobs. | - 1-in cubes cooked meat (16) <br> - 8 cubes pineapple <br> - 8 cheese cubes <br> - 8 cherry tomatoes <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 2 skewers <br> All items listed above per partner pair | - BLM Kabob-Snack Fractions |

Grades 7-8
Overview
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit 4 Lesson 2 Daily Routine $30-45$ minutes | Solve word problems using a variety of strategies and defend strategies. <br> Model and solve 3-step word problems. <br> Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 15 <br> - Graphing <br> - Money Matters | - 36 color tiles | - BLM Color Tile Craziness-Measurement Lab Record Sheet <br> - graph paper <br> - BLM Solve It! Problem 1-2 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 2-3 CGI Spaghetti and Meatballs for All |
| Classroom <br> Lesson 2 <br> 30 min. -1 hour | Verify similarity of objects found by classmates. | Create a poster of Silly Associations among words. Write a friendly letter. Recognize problems and possible alternative solutions. | Vocabulary <br> Continue building vocabulary through lesson. <br> Literature <br> Look for problems and solutions in the story as it is being read. <br> Transition to Math Students discuss findings from Lesson 1 square investigation. |  | - class set of vocabulary word cards <br> - 12 x18 light colored construction paper <br> - markers or crayons <br> - magazines for clipart <br> - computers for clipart <br> - scissors |
| Math <br> Lesson 2 <br> 30 minutes | Compare measurements of rectangles. <br> Work with others to find scale factors and similar rectangles. | Discuss observations and measurements of shapes and their relationships. <br> Explain scale factors to classmates. <br> Discuss problem solving strategies with classmates. Write solutions for finding scale factors and similar rectangles. Explain how to determine when a rectangle is similar to another rectangle. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics Solve problems using similarity. | - customary ruler | - BLM Similar Rectangle Cut-outs <br> - BLM Similar Rectangles Record Sheet <br> - BLM Similar Rectangles Record Sheet-Teacher Guide <br> - scissors |


| Follow-up <br> Lesson 2 <br> 30 min. -1 hour (including Snack Fractions) | Compare measurements of rectangles. <br> Work with others to find scale factors and similar rectangles. | Discuss observations and measurements of shapes and their relationships. <br> Explain scale factors to classmates. <br> Discuss problem solving strategies with classmates. Write out solutions for finding scale factors and similar rectangles. <br> Explain how to determine when a rectangle is similar to another rectangle. | Play a game describing the sides of a new similar shape when the original dimensions and scale factor are known. <br> Writing Prompt <br> Explain your conclusions to the investigation for today. What is your answer to the questions, "Are all rectangles similar," and "Why do you feel that way?" | - rectangle cut-outs <br> - dominoes (1 set per pair) | - BLM Similar Rectangles Record Sheet <br> - BLM King of the Mountain-Game Instructions <br> - King of the Mountain Game Board <br> - game markers <br> - graph paper <br> - scratch paper |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Snack Fractions Lesson 2 | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems. | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing snack bags. | - 2 paper dessert plates <br> - 2 paper towels <br> - 2-100 calorie snack bags <br> - 2-4-function calculators All items above per partner pair | - BLM Snack Bag-Snack Fractions |

Grades 7-8
Overview


| Follow-up <br> Lesson 3 <br> 30 min. -1 hour (including Snack Fractions) | Use any strategy to determine the dimensions of a model using a specified scale factor. Make visual representations to help solve scale factor (model) problems. | Discuss problem solving strategies with peers. Write solutions for solving the model problem. <br> Explain how to make a model using a specified scale factor. Write an explanation to determine whether a scale factor is for enlarging or reducing an object. | Students work in teams to solve the Thinking Smaller, Sears Tower sheet. Continue the recursive review problems, modeling another problem before circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt <br> Explain how you can know whether you are reducing or enlarging a figure by looking at the scale factor. |  | - Sears Tower article <br> - BLM Thinking SmallerSears Tower <br> - Family Fun Generic Game Board <br> - Family Fun Movement cards <br> - Unit 4 Family FunProblem Cards <br> - Family Fun Answer Key from Unit 1 (all grade bands) <br> - Unit 4 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions <br> - game markers <br> - BLM Recursive Review Problems Lessons 1-3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Snack Fractions Lesson 3 | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density), price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems. | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing crackers and cream cheese. | - 3 graham crackers (whole sheets) <br> - 2 T cream cheese <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 2 plastic knife All items above per partner pair | - BLM Crackers and Cream Cheese-Snack Fractions |

## Project SMART/Math MATTERS 2014

| Grade Level: 7-8 | Unit 4 / Lessons 1-2-3 |
| :---: | :---: |

## Daily Routine Math Objectives:

Solve word problems using a variety of strategies and defend strategies.
Model and solve 2 and 3 -step word problems.
Compose and decompose values to show a new representation of the value.
Solve problems involving ratios, proportions, and similarity.

## Daily Routine Language Objectives:

Listen, read, speak, and write the problem.
Listen to, read, speak and write about measurement vocabulary.
Speak to partners, teacher, and class using vocabulary introduced in the Daily Routines.

## Unit Math Objectives:

Make observations and measurements regarding specific shapes and their relationships to one another.
Verify that all squares are similar.
Compare measurements of rectangles.
Work with others to find scale factors and similar objects (including rectangles).
Solve similarity problems using any strategy including scale factors and equivalent ratios.
Use any strategy to determine the dimensions of a model, using a specified scale factor.
Make visual representations to help solve scale factor (model) problems.

## Unit Language Objectives:

Use a Gallery Walk as an opportunity to discuss similarities and differences between your understanding of the vocabulary words and other student's understandings.
Explain how to find scale factors and use them in solving similarity problems.
Analyze character traits from author's clues and illustrations.
Discuss problem solving strategies with classmates.
Write out solutions for finding scale factors and similar objects.
Explain how to determine when objects (including rectangles) are similar and when they are not similar.
Discuss examples and non-examples of similar objects.
Write about scale factors and how they are used.
Create a poster of Silly Associations among words.
Write a friendly letter.
Recognize problems and possible alternate solutions.
Discuss the use of scale factors and models used by architects, engineers, etc.
Explain how to find scale factors and how to use them in solving similarity problems.
Write a creative sentence using several vocabulary words.
Explain how to make a model using a specified scale factor.
Write an explanation to determine whether a scale factor is for enlarging or reducing an object.

## Technology Objectives:

Use research skills and electronic communication, with appropriate supervision, to create new knowledge.

```
Vocabulary
Math:
Language:
```

scale factor, similarity, similar, proportion, ratio
comfort, tending, stretched, reunion, banquets, balancing, arrival, relatives

## Resources/Literacy Links Spaghetti and Meatballs for All <br> by Marilyn Burns

## Lesson Sequence

- Daily Routine: 30-45 minutes
- Classroom Lesson: 30 minutes -1 hour
- Math Lesson: 30 minutes
- Classroom Follow-up including Independent Writing: 30 minutes -1 hour


## Enrichment Activities - These are BEYOND EXPECTATION

## Math Extensions:

Fraction/Decimal/Percent games:
http://www.bbc.co.uk/skillswise/numbers/fractiondecimalpercentage/comparing/comparingall3/index.shtml http://www.quia.com/jg/65724.html

## Strand Extensions:

- Social Studies: History of spaghetti
http://www.online-gourmet-foods.com/history-of-spaghetti.html http://www.bestofsicily.com/mag/art73.htm
http://www.inmamaskitchen.com/FOOD IS_ART/pasta/historypasta.html
- Science: Physical changes in spaghetti from raw to cooked - science experiments http://www.gk-12.osu.edu/Lessons/4th\ Grade/Spagetti\ Physical\ Change.pdf http://www.ehow.com/info 7966876 spaghetti-science-activities.html
- Art: Pasta Art
http://tcc.howstuffworks.com/family/pasta-crafts1.htm


## Technology:

Applet to SMART board for this literature book:
http://exchange.smarttech.com/search.html?q=\"literature\"
Online geometry resizing tool: http://www.mathsisfun.com/geometry/resizing.html
Recipe for healthy Almond Joy bar: http://www.healthyindulgences.net/2009/01/almond-joy-of-
cooking.html
Mini Unit on writing a friendly letter: http://abcteach.com/ Writing/FLinfo.htm
Mini Unit on character analysis:
http://homeworktips.about.com/od/writingabookreport/a/characteranalysis.htm
http://www.funattic.com/game flingsock.htm\#anchor349698
Walk - Art Walk: http://entertainment.howstuffworks.com/paintings-by-gustave-caillebotte2.htm

## 1. Genre: Memoir

2. Writing Objective: Students write a memoir about their experiences as a new arrival. (To the United States; to the town they're currently in; to the school, etc.)
> Organization of text:
The memoir is a narrative text relating certain life experiences. In this case, it is what students experienced as a new arrival to a particular place. This can be a powerful way for students to tell their immigrant/migrant story. The memoir can narrate what students experienced, how they felt, how the experiences changed them, how it changed their families, etc.
> Possible sequence of mini-lessons:
3. Brainstorm: Talk with students about how they learned the word arrival from Spaghetti and Meatballs for All. An arrival is a person who has just arrived somewhere. Explain how everyone in the classroom has been a new arrival at some point - a new arrival to the United States, to the town they're currently in for the summer, to the school they are at this summer, etc.

Explain that this week they will have the chance to write a memoir - the story of their lives focusing on when they moved and became a new arrival somewhere. The memoir can tell each of their personal immigrant/migrant stories. It is a way for them to tell what they have experienced, how it felt being in that situation, how it changed them and their families, etc. Some of the students' experiences might be similar to each other, and others will be very unique.

Give students a chance to share with the class some of the things they experienced as a migrant as a new arrival. If students are reluctant at first to share, ask specific questions to get them started. Continue asking questions to help them share more details about what they experienced. As more students share, more students will want to build off of what their classmates said, sharing similar experiences or emotions. The more time you spend having students share, and asking questions to dig deeper into their experiences, the more detailed ideas they will have for writing their memoirs. Have students tell specific stories to illustrate certain experiences/emotions they mention. (The power of a memoir is in the personal details the author includes.)
2. Draft: Model for students how to begin drafting a memoir. Remember, this is a narrative, so you can include narrative elements such as dialogue, descriptive language, and sequential story telling.
3. Revise: Once students have an initial draft, put students in small groups to have them share their writing with their peers. Model how they should take turns reading their memoirs aloud to the small group and then get feedback. Model how the feedback should first mention something they like about the student's writing, and then a question they have to clarify a certain part, or a comment they have about how the student could add more detail to a certain part. It is essential to model this small group process for students so they can give helpful feedback to their peers.
4. Publish: Have students create a final version of their memoirs, based on any changes/additions they made to their writing from the feedback they received. You may want to have students share their memoirs at a writing celebration, inviting families to join.

| Materials <br> - Mid-assessment | Unit 4, Lesson 1 Grades 7-8 <br> Daily Routine 695 |
| :---: | :---: |
| Language Objectives <br> - Mid-assess summer skills. <br> Math Vocabulary | Mid-assessment - The Daily Routines have been omitted to accommodate the administration of this tool. Please be sure to give the assessment as per the instructions under the Assessment Tab in your Teacher's Guide. |
| Math Vocabulary <br> scale factor <br> similarity <br> similar <br> proportion <br> ratio | The following daily activities will help prepare your students for the Post-assessment. They are not optional. |
|  | ESSENTIAL |
| Literature Vocabulary <br> comfort <br> tending <br> stretched <br> reunion | Measurement Lab <br> - Lesson 1 -omit <br> - Lesson 2 - area <br> - Lesson 3 - similar figures |
| banquets <br> balancing <br> arrival <br> relatives | Solve It! Multi-step problem solving <br> - Lesson 1 - omit <br> - Lesson 2 - pairs, 3-step problem <br> - Lesson 3 - pairs, 3-step problem |
|  | Fraction Action <br> - Lesson 1 -omit <br> - Lesson 2 - BLM Fraction Action and X Marks the Spot <br> - Lesson 3 - BLM Fraction Action and X Marks the Spot |
|  | $X$ Marks the Spot <br> - Lesson 1 - omit <br> - Lesson 2 - BLM Fraction Action and X Marks the Spot <br> - Lesson 3 - BLM Fraction Action and X Marks the Spot <br> CGI <br> - Lesson 1 -omit <br> - Lesson 2 - rate, multiplication (assessment item 7) <br> - Lesson 3 - price, partitive (assessment item 6) |



Unit 4 Lesson 2-3 - Daily Routines - CGI Problems
One per student

## CGI - Spaghetti and Meatballs for All

|  | Multiplication | Measurement Division | Partitive Division |
| :---: | :---: | :---: | :---: |
| Grouping/ Partitioning | Mr. Comfort had $21 / 2$ pounds of meat from which he used to make the meat sauce for his spaghetti. Each pound cooked out about 4 ounces of fat. Approximately how many ounces of fat were cooked out of the meat? | There were 16.05 pounds of spaghetti for Mr. Comfort to cook for the banquet. If he wanted each of his relatives to have about half a pound, how many relatives could he serve? <br> (Hint: a pound equals 16 ounces.) | Mr. Comfort shared 128 meatballs among 32 guests at the reunion. How many meatballs did each guest receive? |
| Rate | Mr. Comfort can make 15 meatballs in a minute. At that rate, how many meatballs can he make in 30 minutes? | Mr. Comfort can make 15 meatballs in one minute. At that rate, how long would it take him to make 120 meatballs? | Mr. Comfort stretched his strength and made 1800 meatballs in 15 minutes. If he made them at a constant rate, about how many meatballs did he make in one minute? |
| Price | A head of Romaine lettuce cost $\$ 2.49$. If Mr. Comfort bought 16 heads of lettuce, how much did he pay for the lettuce? | Mr. Comfort calculated that each salad costs $\$ 2.80$ to serve. If he spent $\$ 84.00$ on the salads, how many salad servings did he prepare? | Mr. Comfort spent $\$ 97.50$ on salad ingredients for the banquet. If he served a total of 30 relatives, how much did each serving cost? |

Unit 4 Lesson 2-3 - Daily Routines - CGI Problems
One per student

## CGI - Spaghetti and Meatballs for All

|  | Multiplicación | División de medida | División partitiva |
| :---: | :---: | :---: | :---: |
| Agrupación/ Partición | El Sr. Comfort tenía $21 / 2$ libras de carne, de las que usó para hacer la salsa de carne para el espagueti. De cada libra se cocinaron aproximadamente 4 onzas de grasa. ¿Aproximadamente cuántas onzas de grasa se cocinaron de la carne? | Había 16.05 libras de espagueti para que el Sr . Comfort cocinara para el banquete. Si quisiera que cada uno de sus parientes recibiera cerca de media libra, ¿a cuántos parientes les podría servir? (Pista: una libra equivale a 16 onzas). | El Sr. Comfort compartió 128 albóndigas entre 32 invitados en la reunión. ¿Cuántas albóndigas recibió cada invitado? |
| Tasa | El Sr. Comfort puede hacer 15 albóndigas en un minuto. A esa tasa, ¿cuántas albóndigas puede hacer en 30 minutos? | El Sr. Comfort puede hacer 15 albóndigas en un minuto. A esa tasa, ¿cuánto tiempo le llevaría hacer 120 albóndigas? | El Sr. Comfort excedió sus fuerzas e hizo 1800 albóndigas en 15 minutos. Si las hizo a una tasa constante, ¿aproximadamente cuántas albóndigas hizo en un minuto? |
| Precio | Una planta de lechuga romana cuesta $\$ 2.49$. Si el Sr. Comfort compró 16 plantas de lechuga, ¿cuánto pagó por la lechuga? | El Sr. Comfort calculó que cada ensalada cuesta $\$ 2.80$ para servir. Si gastó $\$ 84.00$ en las ensaladas, ¿cuántas porciones de ensalada preparó? | El Sr. Comfort gastó $\$ 97.50$ en ingredientes para la ensalada para el banquete. Si le sirvió a un total de 30 parientes, ¿cuánto costó cada porción? |

Materials

- class set of vocabulary cards
- 9x12 manila paper 1 per pair
- markers or crayons
- tape
- labels (nouns, verbs)
- Sentence strips (1 for each vocabulary word sentence)
- 16 color tiles per pair
- BLM Mrs. Comfort's Tables BLM Mrs. Comfort's TablesTeacher Key


## Literature Selection

Spaghetti and Meatballs for All by Marilyn Burns

Math Vocabulary
scale factor
similarity
similar
proportion
ratio

Literature Vocabulary
comfort
tending
stretched
reunion
banquets
balancing
arrival
relatives

ELPS (English Language Proficiency Standards):
2D, 2H, 2I, 3D, 3E, 4G, 4J, 5B

Technology Option
Great use for SMART board!

## Unit 4, Lesson 1 <br> Classroom Lesson

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher.
At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Compare the perimeter to the area in specific arrays made from tiles.


## Reading Objectives:

- Determine the meaning of words using context clues.
- Describe how characters respond or change as the plot moves toward a resolution.


## Language Objectives:

- Use vocabulary words to discuss a story.
- Match definitions with vocabulary words.


## BEFORE READING

Building Background - Literature \& Vocabulary
Show students the cover of the book. Ask them to discuss what they see. Draw attention to the subtitle "A Mathematical Story" and to the cover illustration. How might this story involve mathematics?

## Comprehensible Input - Vocabulary

Explain: This is a story about a husband and wife - Mr. and Mrs.
Comfort (point to them on the cover) who decide to invite their relatives to a family reunion.

Write the following sentence somewhere the entire class can see:

## Mr. and Mrs. Comfort decide to invite their relatives to a family reunion.

Talk with students about the meaning of the three bold literature vocabulary words. You can ask:

- What does comfort mean? Why might the author choose this last name for the characters? (What might it symbolize about the kind of people they are?)
- Who are relatives? (Help students understand that relatives can mean any family member.)




## Guided Reading Groups and Independent Reading Connection

If you conduct guided reading groups as part of your balanced literacy instruction, or provide time for independent reading, you can reinforce these same reading strategies.
After students have read the text on their own, to improve their comprehension of the more difficult parts:

1. Monitoring for Comprehension: You can continue to have students think about how different characters respond to a problem, and how they change as the story moves towards a resolution. You can also ask students questions about the resolution:
a. Was the problem resolved? How?
b. Were there other problems that weren't resolved?
2. Have students point to specific excerpts from the text to provide evidence to support their responses.
3. Determining Word Meaning:
"What does $\qquad$ mean?"
(Reread the sentence. Does it give us any clues? Read the next sentence(s) or previous sentence(s). Do they give us any clues?)

## Unit 4, Lesson 1 <br> Classroom Lesson - continued

students' comprehension and enjoyment of the text, so keep the reading as fast-paced as possible.

You may want to mark the following stopping points in the text with sticky notes, indicating what you will say to students.

## Throughout the Reading: Monitoring for Comprehension

There are so many characters in this story that it quickly becomes confusing even for English-proficient readers. To complicate this further, the author refers to the characters by their relation to Mr. and Mrs. Comfort (Ex: Mrs. Comfort's brother's wife). To clarify who is who in a visual way, you can display the BLM Family Tree, which shows how all of the characters are related. As you read the story and new characters arrive to the reunion, point them out on the Family Tree (image shown here). You may want to cover up each character with a small sticky note until they appear in the story, and then reveal them. That makes the Family Tree less overwhelming, and helps focus students' attention. You may also want to enlarge the Family Tree or project it on a screen to enlarge the image.

ELLs: You may need to explain to ELLs the possessive "s" used to indicate family relations (Mrs. Comfort's daughter). The apostrophe is used in English to show that something or someone belongs to the subject. Relate this to Spanish, which uses the preposition "de" (La hija de Mrs. Comfort). You can label the family tree with the characters' names, so students can SEE how this is used.


| Listening Center: Independent Reading <br> You can record Spaghetti and Meatballs for All, and let students listen to it in a Listening Center as part of their independent reading time. <br> Beginning ELLs: Benefit from listening to a text repeatedly to connect oral and written language. Intermediate \& Advanced ELLs: Benefit from listening to a text repeatedly to develop fluency, and reading along softly when possible. Using the podcast tool on MAS Space, have students choose their favorite page(s) and record themselves reading that part aloud. Then, they listen to that particular part several times, reading along softly. When they feel they've had enough time to practice, they record themselves reading that page again. Have students compare their two recordings to see how their fluency has improved. | Unit 4, Lesson 1 <br> Classroom Lesson - continued <br> p. 1 "One fine day..." <br> Determining Word Meaning <br> - Teacher Think Aloud: I saw many of you give the thumbs-up sign. What words did you hear? tending, stretched, banquet. Let me read this page again, and make sure we understand what each word means. <br> - Tending: She is tending the lettuce in her garden -In the picture we can see how she is taking care of the lettuce, so I think tending means taking care of something. <br> - Stretched: I can figure out what this word means because I can see how Mr. Comfort is extended on the bench. (Act out stretched.) <br> - Banquet: Many of you thought this word would be in the story. Mr. Comfort is looking at a cookbook for recipes that serve banquets - that must mean a meal for a large group of people not just two or four people like the other recipes. He wants to know how many people are coming, to decide if they need to serve a banquet, or a smaller meal. <br> p. 7 "Mrs. Comfort found a folding chair..." <br> Determining Word Meaning <br> - Teacher Question: Some of you gave the thumbs-up sign - you heard the word balancing. Let me read that sentence again. Show me what balancing means, based on what you heard in this sentence. [Have students act out.] <br> p. 11 "You're so right," Mr. Comfort said. <br> Monitoring for Comprehension <br> - Teacher Question: (after reading the page) Why does Mrs. Comfort keep saying that it won't work? What is the problem? <br> p. 13 "Save some of that garlic bread for me!" <br> Determining Word Meaning <br> - Teacher Question: Did anyone catch the vocabulary word here? Let me read the first sentence again. What does arrival mean? Talk with your partner. <br> p. 25 ""Wait! Wait!" <br> Monitoring for Comprehension <br> - Teacher Think Aloud: The problem just keeps getting worse! No one is listening to Mrs. Comfort, and she is the only one who knows that the tables have to be arranged a specific way so all of the relatives have a place to sit. <br> - Teacher Question: How is Mrs. Comfort changing as the problem gets worse? Talk with your partner. |
| :---: | :---: |


|  | Unit 4, Less Classroom <br> Circulate to liste the class. Have characters chang that she is getting <br> p. 29 "I say we Monitoring for <br> - Teacher Qu that he knew Comfort the resolved? T <br> Listen in to students sh understand resolution. | $1 \begin{array}{cc} & \text { Grades 7-8 } \\ \text { on } \\ \text { - continued }\end{array}$ <br> to a few partners' discussions, and then regroup w students share. Emphasize the fact that roughout a story. Here, Mrs. Comfort is showing creasingly frustrated. <br> de the four pairs of tables..." <br> mprehension <br> on: Mr. Comfort says that "it all worked out" and rrs. Comfort would "think of something." Was Mrs. who solved the problem? How was the problem to your partner. <br> ners' discussions, and then regroup the class. Have with the class, and make sure students correctly resolution and how each character responded to this |
| :---: | :---: | :---: |
| Workshop: <br> Waunch Unit 4 Writing <br> Students write a memoir about <br> their migrant experiences - telling$\quad$Evaluation <br> $\bullet \quad$Teacher Q <br> Comfort? |  |  |
| the town they're in this summer; to the school). In their memoir, students can reflect on their migrant experiences and being a new arrival, how they felt, and how it has affected them. See Writing Workshop in | AFTER READ Matching Activ Display the five word wall, and i story: ice cream family didn't fig | G <br> - Part 2 <br> abulary words that appeared in the story on the ify the two words from the list that were not in the fight. You can discuss with students how the but Mrs. Comfort got very frustrated. |
| Balanced Literacy Extensions for an outline of possible. | Show students the words, in a mixe decide which de matching activity | LM Student-Friendly Definitions for the five new order. Have students work with a partner to ions belong with which word. At the end of the our word wall will look like the following example: |
|  | comfort | To make someone feel better |
|  | relatives |  |



|  | Unit 4, Lesson 1 Grades 7-8 <br> Classroom Lesson - continued Ons |
| :---: | :---: |
| Technology <br> Students could create their arrays in Word graphic tools or KidPix. | Transition to Math <br> During the math portion of our lesson we are going to be investigating area and perimeter. The Math Lesson will be delving into ratio and proportion, taking a little different perspective on the story. |
| Applet to SMART exchange is available for this book. Membership is free. http://exchange.smarttech.com/ search.html?q=\%22literature\%22 | We are going to be looking at the arrangements of Mrs. Comfort's tables. What were the table arrangements in the book? <br> How many tables did Mrs. Comfort order? (8) |
| Distribute Materials Color tiles -8 per student BLM - Mrs. Comfort's Tables | Eight groups of one table - we can represent that with eight separate ONE color tiles. (Demo with color tiles and have students do the same.) Let's record on our record sheet as we go. |
| $\pm \bar{\uparrow}$ Shared across grade bands Pirate's Corner What are some of the math skills you have learned so far this summer that you either didn't know before or that you were not comfortable with before? | - First, write the description and draw the picture in the first column (do so as per TEACHER KEY). <br> - What does the label on the next column ask? (perimeter of one group) <br> - We can look at these tables as eight groups of one. What is the perimeter of one table? (4 units) <br> - The next column label is area - what is area? (the part of the shape inside the perimeter) Well, if we consider one table tabletop to be ONE area, then what area does one group have? (1 square unit or 1 unit ${ }^{2}$ ) <br> - The next column requires us to figure the total perimeter of the groups. What is the total area of all of the groups? Eight tables times four unit perimeter on each equals 32 units. <br> - The next column requires us to figure the total area of the groups. So what is the total area of all eight groups? (8 square units or 8 units ${ }^{2}$ ) <br> - Capacity, then, of the single tables is what? (If one person sits at each side, then 32 people can be seated with this configuration.) <br> - Finally, an extension column. This column allows us to add within the column to the left of it if need be. We don't have two figures in this column, so our extension is the same as the previous column, or 32 people. <br> What was the second arrangement? |


|  | Unit 4, Lesson 1 <br> Classroom Lesson - continued <br> Two tables were pulled together - that makes a $2 \times 1$ array and is arranged like this. <br> So that left how many single tables? (6) <br> $\square$ (Repeat process, having students model and record. Notice that each GROUP is counted. As tables are pulled together, they are considered a single group. So in this case you have the $2 \times 1$ as a group, and you have the six singles as six different groups.) <br> Students then complete the worksheet, finding the perimeter and area for each group, then finding the total perimeter and area as well as the number of people that can be seated. <br> Ask students first to help one another as a class fill in the arrangements. You may need to read through the book another time to see what the table redistributions were. <br> Circulate the room asking questions: <br> - What does this arrangement look like as an array? <br> - Show me how you are finding the perimeter. <br> - Show me how you are finding the area. <br> - What do you notice about the total area each time? (remains the same) <br> - How do you explain that? (same number of tables - each table is 1 square unit) <br> When students are finished, tell them they will be using this record sheet in Lesson 2 to discover and verify a few patterns in the data. Have students report back to the class the data they have collected so that everyone agrees with what should be on the chart. Each answer should be verified through models. <br> Objectives <br> Read through the language and math objectives with the students, having them tell you how they accomplished each. |
| :---: | :---: |

Unit 4 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## comfort

## tending

## stretched

## reunion

Unit 4 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## consuelo

## cuidando

## estiró

## reunión

Unit 4 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## banquets

# balancing 

## arrival

## relatives

Unit 4 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## banquetes

## balancear

## llegada

## familiares

Unit 4 Lesson 1 - Math Lesson
One per student
Mrs. Comfort's Tables
Work with an elbow partner and your teacher to complete the table below.


## Unit 4 Lesson 1 - Math Lesson

One per student
Mrs. Comfort's Tables - Teacher Key
Work with an elbow partner and your teacher to complete the table below.

| Arrangements (description and picture) |  | Perimeter 1 group | Area 1 group | Perimeter Total | Area Total | Seating Capacity | Extension |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 single tables |  | 4 units | 1 unit $^{2}$ | 32 units | 8 units $^{2}$ | 32 people | $\begin{gathered} 32 \\ \text { people } \end{gathered}$ |
| $2 \times 1$ array <br> 6 singles | $\square \begin{aligned} & \square \quad \square \square \\ & \square \\ & \square \\ & \square \end{aligned}$ | $\begin{aligned} & 6 \text { units } \\ & 4 \text { units } \end{aligned}$ | 2 units $^{2}$ <br> 1 unit $^{2}$ | 6 units 24 units | $\begin{aligned} & 2 \text { units }^{2} \\ & \frac{6 \text { units }^{2}}{8 \text { units }^{2}} \end{aligned}$ | 6 people <br> 24 people | $\begin{gathered} 30 \\ \text { people } \end{gathered}$ |
| $2 \times 2$ array 4 singles |  | $\begin{aligned} & 8 \text { units } \\ & 4 \text { units } \end{aligned}$ | 4 units $^{2}$ 1 unit $^{2}$ | 8 units 16 units | $\begin{aligned} & 4 \text { units }^{2} \\ & \frac{4 \text { units }^{2}}{8 \text { units }^{2}} \end{aligned}$ | 8 people <br> 16 people | $\begin{gathered} 24 \\ \text { people } \end{gathered}$ |
| $2 \times 3$ array |  | $\begin{gathered} 10 \text { units } \\ 4 \text { units } \end{gathered}$ | 6 units $^{2}$ <br> 1 unit $^{2}$ | 10 units 8 units | $\begin{aligned} & 6 \text { units }^{2} \\ & \frac{2 \text { units }^{2}}{8 \text { units }^{2}} \end{aligned}$ | 10 people 8 people | $\begin{gathered} 18 \\ \text { people } \end{gathered}$ |
| $2 \times 4$ array |  | 12 units | 8 unit $^{2}$ | 12 units | 8 units $^{2}$ | 12 people | $\begin{gathered} 12 \\ \text { people } \end{gathered}$ |


| Materials <br> - 36 color tiles per student <br> - customary ruler (inches) | Unit 4, Lesson 1 Grades 7-8 <br> Math Lesson Ons |
| :---: | :---: |
| Math Vocabulary <br> scale factor <br> similarity <br> similar <br> proportion <br> ratio <br> Literature Vocabulary <br> comfort <br> tending <br> stretched <br> reunion | Math Objectives: <br> - Compare measurements of squares. <br> - Work with others to find scale factors for similar squares. <br> Language Objectives: <br> - Discuss observations and measurements of shapes and their relationships. <br> - Explain scale factors to classmates. <br> - Discuss problem solving strategies with classmates. <br> - Justify answers regarding similarity among squares. |
| Literature Vocabulary <br> comfort <br> tending <br> stretched <br> reunion <br> banquets <br> balancing <br> arrival <br> relatives <br> ELPS (English Language <br> Proficiency Standards): <br> 2C, 2E, 2F, 3D, 3E, 3J | Building Background <br> As I was working with Mrs. Comfort's arrangements, I saw some interesting patterns that I wanted to investigate further. Mrs. Comfort started out with eight tables, and those tables were SQUARES; that is all sides of each table measured the same unit. Mrs. Comfort's guests made several rectangles, but only one of the rectangles was a square. What |
|  | We are going to investigate squares today and using scale factor we will see what kinds of relationships we can find. <br> Comprehensible Input <br> Each of you should have 36 color tiles, scratch paper, and a pencil. (Show your supplies.) Let's see what squares we can make using our tiles. |
|  | The first square that we can make is a one by one square - one tile. (Place the tile on the table.) <br> Let's draw this on our scratch paper. (Do so, trying to begin an orderly drawing and leaving room for measurement labels.) |
|  | Now label the dimensions (label one side only). Since this is a square, I know that all of the sides are congruent, that is they all have the same measurement. I could label this as " 1 unit," but I happen to know that this is a one-inch square tile (measure with ruler), so rather than labeling in generic "units," we can label in inches. |
|  | And what is the area of this square? (pause) Well, it's easy to see that this is ONE square. And I know that the sides are one inch. How do we find area? (multiply lx w) 1 inch times 1 inch = 1 SQUARE inch or $1 \mathrm{in}^{2}$. Label the inside your 1 tile, $\mathrm{A}=1 \mathrm{in}^{2}$. |
|  | What is the next square we can make with our tiles? (Pause to let them explore.) |




# scale factor 

## similarity

## similar

## proportion

# factor de escala 

> semejanza

## similar

## proporción

| Materials <br> - BLM Recursive Review <br> Problems Lessons 1-3 <br> - 36 color tiles | Unit 4, Lesson 1 <br> Math Vocabulary <br> scale factor <br> similarity <br> similar <br> proportion <br> ratio |
| :--- | :--- |
| Follow-up |  |
| Literature Vocabulary <br> comfort <br> tending <br> stretched <br> reunion <br> banquets <br> balancing <br> arrival <br> relatives | Math Objectives: <br> - Compare measurements of squares. <br> - Work with others to find scale factors for similar squares. |
| Language Objectives: |  |
| - Discuss observations and measurements of shapes and their |  |
| relationships. |  |


|  | Unit 4, Lesson 1 <br> Follow-up - continued <br> Technology Option <br> Website that shows students how <br> to draw midpoints to resize. <br> http://www.mathsisfun.com/ <br> geometry/resizing.html |
| :--- | :--- | | Independent Writing Topic |
| :--- |
| Students will have a daily writing activity which will incorporate the |
| day's focus math vocabulary. |

Unit 4 Lessons 1-3 - Follow-up

## Recursive Review Problems

Solve the recursive review problems using any strategy of your choice.

## Unit 4 Lesson 1

Veronica decided to buy a pair of heels she'd been eying at a boutique downtown. They were originally priced at $\$ 112.00$, but were on sale for $25 \%$ off. She also had a coupon for an extra $15 \%$ off of a purchase over $\$ 50$. What will the price of the heels be before the clerk adds tax?

## Unit 4 Lesson 2

What savings on his bill can Pedro expect if his favorite sandwich is discounted $10 \%$ off of the regular price of $\$ 8.95$ ?

## Unit 4 Lesson 3

Gary's dinner bill at the restaurant was $\$ 42.95$. If he leaves the server a $20 \%$ tip, how much will his bill be altogether?

Unit 4 Lessons 1-3 - Follow-up
Recursive Review Problems
Solve the recursive review problems using any strategy of your choice.

## Unidad 4 Lección 1

Verónica decidió comprar un par de zapatos que había estado mirando en una boutique en el centro. El precio original era $\$ 112.00$, pero estaban en oferta por un $25 \%$ menos. También tenía un cupón por un descuento extra del $15 \%$ para una compra superior a los $\$ 50$. ¿Cuál será el precio de los zapatos antes de que el vendedor le agregue los impuestos?

## Unidad 4 Lección 2

¿Qué ahorro puede esperar Pedro en su cuenta si a su sándwich favorito le descuentan un 10\% del precio normal de $\$ 8.95$ ?

## Unidad 4 Lección 3

La cuenta de la cena del restaurante de Gary era de $\$ 42.95$. Si le deja al mozo una propina del $20 \%$, ¿de cuánto será su cuenta en total?

| Materials |
| :--- |
| - 2 skewers |
| - 1-in cubes cooked meat (16) |
| - 8 cubes pineapple |
| - 8 cheese cubes |
| - 8 cherry tomatoes |
| - 2 paper dessert plates |
| - 2 paper towels |
| All items listed above per partner |
| pair |
| - BLM Kabob-Snack Fractions |

Math Objectives

- Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals.
- Convert between fractions, decimals, whole numbers and percents.
- Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios).
- Estimate and find solutions to application problems involving percent.

Language Objectives

- Discuss how ratios and proportions can be used to solve real-world problems.

Math Vocabulary
scale factor similarity
similar proportion ratio

Literature Vocabulary comfort tending stretched reunion banquets balancing arrival relatives

## Unit 4, Lesson 1 <br> Snack Fractions <br> Grades 7-8 <br> tudents should wash their hands before this activity if using food items.

## Snack Fractions

Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack.

Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, extend:

## QUESTIONS

- What does that number represent?
- What strategy will you use to find the percent?
- Why did you choose the bar model?
- What does your answer represent?

Finally, let them enjoy their snack.
(Naturally, if you think the portions suggested in the materials list are too small for a middle schooler's snack, feel free to increase the amounts; make sure, though, that you make the amounts easily divided in halves - they've already done a great deal of work to get the snack.)

## Snack Fraction Journal Writing: BLM Kabob-Snack Fractions

Explain why it is or is not reasonable for 12 meats out of 40 ingredients to be more than $50 \%$ of the ingredients.

Objectives: Review the objectives with the class, making sure they understand how they achieved each.

Unit 4 Lesson 1 - Snack Fraction
One per student

## Kabob - Snack Fractions

Work with your partner to solve the problems.

1. Divide the ingredients with your partner and assemble your kabob on the skewer provided.

Draw your kabob on the skewer below.
2. From your picture, fill in the chart below. Then answer the following questions.

|  | meat | cheese | pineapple | tomatoes | Total ingredients <br> combined |
| :---: | :---: | :---: | :---: | :---: | :---: |
| total pieces |  |  |  |  |  |
| your portion <br> (half) |  |  |  |  |  |

3. Using the ratio of (TOTAL PIECES: TOTAL INGREDIENTS COMBINED) find the percent each represents of the whole.

Meat $\qquad$ \% cheese $\qquad$ \% pineapple $\qquad$ \% tomatoes $\qquad$ \%
4. Using the ratio of (YOUR PORTION: TOTAL INGREDIENTS COMBINED) find the percent each represents of the whole.

Meat $\qquad$ \% cheese $\qquad$ \% pineapple $\qquad$ \% tomatoes $\qquad$ \%

## Unidad 4 Lección 1 - Fracciones de refrigerios

Una por estudiante

## Brocheta - Fracciones de refrigerios

Colabora con tu compañero para resolver los problemas.

1. Divide los ingredientes con tu compañero y arma tu brocheta en el pincho provisto. Dibuja tu brocheta en el pincho a continuación.
2. A partir de tu imagen, completa el cuadro que se encuentra abajo. Luego, responde las siguientes preguntas.

|  | carne | queso | piña | tomates | Ingredientes <br> totales <br> combinados |
| :---: | :---: | :---: | :---: | :---: | :---: |
| piezas <br> totales |  |  |  |  |  |
| tu porción <br> (mitad) |  |  |  |  |  |

3. Usando la relación de (PIEZAS TOTALES: INGREDIENTES TOTALES COMBINADOS), encuentra el porcentaje que cada uno representa del total.

Carne $\qquad$ \% queso $\qquad$ \% piña $\qquad$ \% tomates $\qquad$ \%

## Unit 4 Lesson 1 - Family Fun

Dear $\qquad$ ,

We read Spaghetti and Meatballs for All by Marilyn Burns today in class.

The math ideas in the story included...
$\qquad$
$\qquad$
$\qquad$


Some of the activities we did in math that relate to the book were...

My teacher would like for us to:

- Calculate the area of the first surface I find, at home or on a family outing, that is covered in tiles.

Sincerely,

## Unit 4 Lesson 1 - Family Fun

Querido $\qquad$ ,

Leimos Spaghetti and Meatballs for All por Marilyn Burns hoy en la clase.

Las ideas matemáticas en en cuento son:
$\qquad$
$\qquad$
$\qquad$
Algunas de las actividades que hicimos en la clase de matemáticas son:

Mi maestro quiere que nosotros:

- Calcular el área de la primera superficie que encontremos, en casa u otro lugar, que esté cubierto de azulejos.

Atentamente,

Materials

- BLM Color Tile CrazinessMeasurement Lab Record Sheet
- BLM Solve It! Problems 1-2
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 2-3 CGI Spaghetti and Meatballs for All

Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 3-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.


## Math Vocabulary

scale factor
similarity
similar
proportion
ratio

Literature Vocabulary
comfort
tending stretched
reunion
banquets
balancing
arrival
relatives

## Unit 4, Lesson 2 <br> Grades 7-8 <br> Daily Routine <br> 

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - omit
- Lesson 2 - area
- Lesson 3 - similar figures

Lesson 2 Materials

- 36 color tiles
- graph paper

Lesson 2 Student Groups

1) create as many arrays as possible with all 36 color tiles
2) create a diagram of each array on graph paper
3) label the dimensions of each array next to its diagram
4) answer questions on BLM Color Tile Craziness

Solve It! Multi-step problem solving

- Lesson 1 - omit
- Lesson 2 - pairs, 3-step problem
- Lesson 3 - pairs, 3-step problem


## Fraction Action

- Lesson 1 - omit
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot
$X$ Marks the Spot
- Lesson 1 - omit
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot

CGI

- Lesson 1 - omit
- Lesson 2 - rate, multiplication (assessment item 7)
- Lesson 3 - price, partitive (assessment item 6)

|  | Unit 4, Lesson 2 Grades 7-8 <br> Daily Routine - continued 6is |
| :---: | :---: |
| Assessment Items As a result of this unit, students will be prepared for the following assessment items: | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
| TEKS for this Unit $\begin{aligned} & 7^{\text {th }-} 7.2 \mathrm{D}, 7.3 \mathrm{~B}, 7.4 \mathrm{~B}, \\ & 8^{\text {th }}-8.2 \mathrm{D}, 8.6 \mathrm{AB} \end{aligned}$ | OPTIONAL <br> Target Number <br> - Lesson 1 - omit <br> - Lesson 2 - Target Number 15 <br> - Lesson 3 - Target Number 45 <br> Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

Unit 4 Lesson 2 - Daily Routines - Measurement Lab

## Color Tile Craziness - Measurement Lab Record Sheet

Students should work in small groups.
Materials:

- 36 color tiles
- graph paper

Task:

1) Create as many arrays as possible using ALL 36 color tiles at one time.
2) Shade a diagram of the arrays on the graph paper.
3) Label each array with its dimensions.

Which array has the greatest perimeter?

Which array has the least perimeter?

What is the area of each of those arrays?

What is the area of ALL of the arrays you created?

What conclusions can you make from this investigation?

## Unidad 4 Lección 2 -

Una por estudiante

## Locura de fichas de colores - Hoja de registro del laboratorio de medición

Los estudiantes deben trabajar en grupos pequeños.

## Materiales:

- 36 fichas de colores
- papel cuadriculado



## Tarea:

1) Crea la mayor cantidad de matrices posible usando las 36 fichas de colores a la vez.
2) Sombrea un diagrama de las matrices en el papel cuadriculado.
3) Etiqueta cada matriz con sus dimensiones.
¿Qué matriz tiene el perímetro más grande?
¿Qué matriz tiene el perímetro más pequeño?
¿Cuál es el área de cada una de esas matrices?
¿Cuál es el área de todas las matrices que creaste?
¿Qué conclusiones puedes sacar de esta investigación?


## Unit 4 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)

One per student

## Partner \#1 - Problem 1:

Martin needed a few new tools for his lawn service. He saw an ad in the paper for a big sale at his favorite store. All power tools were $20 \%$ off the regular price, which meant he could finally buy that new edger he needed, regularly priced $\$ 399.99$. Hand tools were $45 \%$ off the regular price, so he could buy a new landscape shovel, regularly priced $\$ 49.99$. If he only bought these two items on sale, what would his total be before sales tax?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |

## Partner \#2 - Problem 2:

Martin had saved $\$ 300$ for buying new tools for his lawn service. He needed both a new weed eater and a new leaf vac. He found a big sale online. Power lawn tools were on sale for $25 \%$ off the regular price. The combination tool he really liked was on sale for $\$ 119.00$ for both the weed eater and the vac in one machine. He had enough money to buy a new hedge trimmer, also $25 \%$ off the regular price, on sale for $\$ 89$. How much did he save buying at the sale prices?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |
|  |  |

Unit 4 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)
One per student

## Compañero \# 1 - Problema 1:

Martin necesitaba unas herramientas nuevas para su servicio de mantenimiento de césped. Vio un anuncio en un periódico de una gran venta en su tienda favorita. Todas las herramientas eléctricas estaban un 20\% menos del precio normal, lo que significaba que finalmente podría comprar esa nueva bordeadora que necesitaba, cuyo precio regular era $\$ 399.99$. Las herramientas manuales estaban un $45 \%$ menos del precio normal, por lo que podría comprar una nueva pala de jardinería, cuyo precio regular era $\$ 49.99$. Si solo comprara estos dos artículos en oferta, ¿cuál sería el total antes del impuesto sobre las ventas?

| Solución del problema: <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |
|  |  |
|  |  |

## Compañero \# 2 - Problema 2:

Martin había ahorrado $\$ 300$ para comprar herramientas nuevas para su servicio de mantenimiento de césped. Necesitaba una nueva desmalezadora y una aspiradora de hojas. Encontró una gran venta en línea. Las herramientas eléctricas para el césped estaban en oferta con un $25 \%$ de descuento sobre el precio regular. La herramienta combinada que él realmente quería estaba en oferta a $\$ 119.00$ para ambas, la desmalezadora y las aspiradoras en una máquina. Tenía suficiente dinero para comprar un nuevo cortasetos eléctrico, también con un $25 \%$ de descuento sobre el precio regular, en oferta a $\$ 89$. ¿Cuánto ahorró comprando a los precios de oferta?

| Solución del problema: <br> Nombre: | Verificación de la solución <br> Nombre: |
| :--- | :--- |
|  |  |
|  |  |
|  |  |

Unit 4 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

Materials:
None for this activity

## Task:

Maria ordered a 48 ounce drink and finished $50 \%$ of it. Eleanor ordered a 32 ounce drink and finished $75 \%$ of it. Jackie ordered a 24 ounce drink and drank $100 \%$ of it. Compare the quantities of fluids the friends drank.

## $X$ Marks the Spot

| Write an equation for each statement. |  |
| :--- | :--- |
| Sarah has \$10, which is four less than twice the <br> amount that Matt has? | At the middle school dance, the DJ played 12 <br> slow songs, which was two less than half the <br> number of fast songs? |

Unit 4 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot

## Fraction Action

## Materiales:

Ninguno para esta actividad
Tarea:
María pidió una bebida de 48 onzas y terminó un $50 \%$ de esta. Eleanor pidió una bebida de 32 onzas y terminó un $75 \%$ de esta. Jackie pidió una bebida de 24 onzas y bebió un $100 \%$ de esta. Compara la cantidad de líquidos que las amigas bebieron.

## $X$ Marca el sitio

| Escribe una ecuación para cada oración. |  |
| :--- | :--- |
| Sarah tiene \$10, los cuales son cuatro menos <br> que el doble de lo que tiene Matt. | En la escuela intermedia de danza, el DJ puso <br> 12 canciones lentas, lo que fue dos menos que <br> la mitad del número de canciones rápidas. |
|  |  |

Unit 4 Lesson 2-3 - Daily Routines - CGI Problems
One per student

## CGI - Spaghetti and Meatballs for All

|  | Multiplication | Measurement Division | Partitive Division |
| :---: | :---: | :---: | :---: |
| Grouping/ Partitioning | Mr. Comfort had $21 / 2$ pounds of meat from which he used to make the meat sauce for his spaghetti. Each pound cooked out about 4 ounces of fat. Approximately how many ounces of fat were cooked out of the meat? | There were 16.05 pounds of spaghetti for Mr. Comfort to cook for the banquet. If he wanted each of his relatives to have about half a pound, how many relatives could he serve? <br> (Hint: a pound equals 16 ounces.) | Mr. Comfort shared 128 meatballs among 32 guests at the reunion. How many meatballs did each guest receive? |
| Rate | Mr. Comfort can make 15 meatballs in a minute. At that rate, how many meatballs can he make in 30 minutes? | Mr. Comfort can make 15 meatballs in one minute. At that rate, how long would it take him to make 120 meatballs? | Mr. Comfort stretched his strength and made 1800 meatballs in 15 minutes. If he made them at a constant rate, about how many meatballs did he make in one minute? |
| Price | A head of Romaine lettuce cost $\$ 2.49$. If Mr . Comfort bought 16 heads of lettuce, how much did he pay for the lettuce? | Mr. Comfort calculated that each salad costs $\$ 2.80$ to serve. If he spent $\$ 84.00$ on the salads, how many salad servings did he prepare? | Mr. Comfort spent $\$ 97.50$ on salad ingredients for the banquet. If he served a total of 30 relatives, how much did each serving cost? |

Unit 4 Lesson 2-3 - Daily Routines - CGI Problems
One per student

## CGI - Spaghetti and Meatballs for All

|  | Multiplicación | División de medida | División partitiva |
| :---: | :---: | :---: | :---: |
| Agrupación/ Partición | El Sr. Comfort tenía 2 1/2 libras de carne, de las que usó para hacer la salsa de carne para el espagueti. De cada libra se cocinaron aproximadamente 4 onzas de grasa. ¿Aproximadamente cuántas onzas de grasa se cocinaron de la carne? | Había 16.05 libras de espagueti para que el Sr . Comfort cocinara para el banquete. Si quisiera que cada uno de sus parientes recibiera cerca de media libra, ¿a cuántos parientes les podría servir? <br> (Pista: una libra equivale a 16 onzas). | El Sr. Comfort compartió 128 albóndigas entre 32 invitados en la reunión. ¿Cuántas albóndigas recibió cada invitado? |
| Tasa | El Sr. Comfort puede hacer 15 albóndigas en un minuto. A esa tasa, ¿cuántas albóndigas puede hacer en 30 minutos? | El Sr. Comfort puede hacer 15 albóndigas en un minuto. A esa tasa, ¿cuánto tiempo le llevaría hacer 120 albóndigas? | El Sr. Comfort excedió sus fuerzas e hizo 1800 albóndigas en 15 minutos. Si las hizo a una tasa constante, ¿aproximadamente cuántas albóndigas hizo en un minuto? |
| Precio | Una planta de lechuga romana cuesta $\$ 2.49$. Si el Sr. Comfort compró 16 plantas de lechuga, ¿cuánto pagó por la lechuga? | El Sr. Comfort calculó que cada ensalada cuesta $\$ 2.80$ para servir. Si gastó $\$ 84.00$ en las ensaladas, ¿cuántas porciones de ensalada preparó? | El Sr. Comfort gastó $\$ 97.50$ en ingredientes para la ensalada para el banquete. Si le sirvió a un total de 30 parientes, ¿cuánto costó cada porción? |

Materials

- class set of vocabulary word cards
- $12 \times 18$ light colored construction paper
- markers or crayons
- magazines for clipart
- computers for clipart
- scissors

Literature
Selection
Spaghetti and
Meatballs for All
by Marilyn Burns
Math Vocabulary
scale factor similarity similar proportion ratio

Literature
Vocabulary
comfort
tending stretched reunion banquets balancing arrival relatives

ELPS (English
Language
Proficiency
Standards):
2D, 2I, 3E, 3G, 4G,
5B, 5G

Unit 4, Lesson 2
Classroom Lesson
Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Verify similarities of objects found by classmates.


## Reading Objective:

- Infer character traits based on what characters say and do.


## Language Objectives:

- Use vocabulary words to create a poster of Silly Associations.
- Use adjectives to discuss character traits.


## BEFORE READING

## Practice and Application - Vocabulary

## Silly Association word posters

1. Look at the word wall with the eight literature vocabulary words for this unit, along with the student-friendly definitions (posted in Lesson 1). For each word, have students explain how the word was used in the story. You can ask questions to relate some of the word to students' own lives. Some possible questions are:

- Who comforts you when you're upset? A relative? A friend?
- Have you ever had a family reunion? When? Where? Why?
- What are you balancing in your life right now? (time with family, school, time with friends, work, etc.) Do you think you have a good balance?

2. Explain: Today I would like for you to select three words from these eight words, and create a Silly Association Poster. This is a poster that ties words together in some silly way that is meaningful to you.
3. Model this process for students:
a. Choose three words from the list.
b. Say a silly sentence using all three words.
c. Write the sentence down for students to see, underlining the vocabulary words.
d. Draw an illustration of your sentence.

Example: It was a great comfort to the cow to be stretched out while balancing on the moon.
(The visual would be of a cow stretched out in the curve of the fingernail moon.)
4. Have students work on their own posters. Circulate and help students as needed to correctly use each word in their sentence.

| Language Center <br> Student should <br> continue creating <br> Visual-Verbal Word <br> Association Charts <br> for different <br> literature vocabulary <br> words, and adding <br> them to their <br> binders. Make sure <br> students are able to <br> reference the word wall with the <br> student-friendly <br> definitions to fill in <br> that part of the chart. | Building Background - Literature <br> Attribute Chart activity <br> Explain to students that in life the things we do and the things we say tell others what kind of a person we are. Give students several examples of this, based on things students have done/said recently. What does that tell us about them? Do their actions/words show that they're kind? Responsible? Concerned? Frustrated? Anxious? etc. Lead students in a brief discussion about this. <br> Explain that today they are going to think more deeply about what certain characters do and say in the story, and what this tells us about them. What kind of a person are they? Show students an Attribute chart you have prepared (image below), similar to the one used in Unit 1 to think about Ricardo's traits. Read the adjectives in the chart, discussing unfamiliar adjectives. Tell students that today as you read the story, they will be thinking about which of these words describe which characters. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Attributes |  |  |  |  |  |  |
|  |  | organized | helpful | rushed | frustrated | comforting | oblivious |
|  | Mrs. Comfort |  |  |  |  |  |  |
| - MMini-Unit <br> Writing a <br> Friendly Letter <br> Teach students the form of a friendly letter. Provide them with stationery and envelopes for their final drafts. Here is a simple template: $\underline{\underline{\text { http://abcteach.com/ }}}$ | Mr. Comfort |  |  |  |  |  |  |
|  | $\begin{gathered} \text { Mr. and } \\ \text { Mrs. } \\ \text { Comfort's } \\ \text { daughter } \end{gathered}$ |  |  |  |  |  |  |


|  | Unit 4, Lesson 2 <br> Classroom Lesson - continued |
| :--- | :--- |
|  | ELLs: You can use these suggested adjectives, or switch them for different ones <br> based on the words you would like your students to work with. To make the <br> activity less language-intensive, you can use fewer adjectives, focusing on just four <br> key words. You can also choose simpler (or more challenging) adjectives for some <br> of the words. |
| Students should <br> have the five <br> rectangles cut out <br> from the BLM <br> Similar Rectangles <br> record sheet; <br> HOWEVER, they <br> will need the table <br> on the sheet, so tell <br> them not to destroy <br> the record sheet. | Example: Alternative adjectives for frustrated: <br> - upset, angry (simpler) <br> - exasperated, irritated (more challenging) |
| DURING READING <br> Comprehensible Input - Literature <br> Read aloud Spaghetti and Meatballs for All. Pause occasionally to have students <br> think about which adjectives they feel describe the three characters in the chart. <br> Make sure students explain WHY they think the character has that particular trait - <br> what did the character do or say to show that trait? |  |



| Materials <br> - BLM Similar Rectangle Cutouts | Unit 4, Lesson 2 Grades 7-8 <br> Math Lesson OD |
| :---: | :---: |
| - BLM Similar Rectangles Record Sheet <br> - BLM Similar Rectangles Record Sheet-Teacher Guide <br> - scissors <br> - customary ruler (inches) | Math Objectives: <br> - Compare measurements of rectangles. <br> - Work with others to find scale factors and similar rectangles. <br> Language Objectives: |
| Math Vocabulary <br> scale factor <br> similarity <br> similar <br> proportion <br> ratio <br> Literature Vocabulary | - Discuss observations and measurements of shapes and their relationships. <br> - Explain scale factors to classmates. <br> - Discuss problem solving strategies with classmates. <br> - Write solutions for finding scale factors and similar rectangles. <br> - Explain how to determine when a rectangle is similar to another rectangle. |
| Literature Vocabulary <br> comfort <br> tending <br> stretched <br> reunion <br> banquets <br> balancing <br> arrival <br> relatives | Building Background <br> In Lesson 1 you discovered that all squares are similar. When you think about it, all of the ratios that represent the length as compared to the height of the square are all equivalent ratios - they all equal ONE! No matter what the dimensions are, there is a SCALE FACTOR that can represent an enlargement or a contraction. You might have to use |
| ELPS (English Language Proficiency Standards): 2C, 2E, 2F, 3D, 3E, 3J, 4F, 5G | I wonder if that is true for all rectangles...? That is what we are going to investigate today - various rectangles. What do you think? Since all squares are similar, do you think that all rectangles are similar as well? (Let students discuss with elbow partner, then share thoughts with whole class. Make sure they are giving mathematical reasons for their predictions.) |
|  | Comprehensible Input <br> Using the BLM Similar Figures, walk through the lesson modeling and stopping for discussions as you go. |
|  | First, line up the rectangles so that you have them in order from the smallest to the largest. In the middle of the rectangles, number them 15 (smallest to largest). Leave room to label your side lengths! |
|  | Now, let's take a look at the side lengths of each of the rectangles. Let's measure each rectangle and label it INSIDE the perimeter. |
| Teacher Note <br> Make sure to give the students a few minutes to cut out their rectangles. |  |

## Teacher Note

The copy machine may have distorted the size of the images a bit, so the answers in this lesson can be considered guides. Please use whatever measurements your students are finding on the rectangles. Do NOT make them substitute their actual real-world measurements for the measurements listed in the lesson directions. That will defeat the purpose of having them measure with the ruler.

Even if the copy machine enlarges the images, they will stay proportional to what was originally intended. Therefore, the assignments holds validity and the lesson steps remain the same.

## Unit 4, Lesson 2 <br> Math Lesson - continued <br> Grades 7-8 <br> H

Because copy machines can sometimes distort images, we are going to measure to the nearest half-inch. As you investigate during the followup lesson, you will want to use these measurements. Let's measure the rectangles now. Fill in the chart as you go. (Walk around and monitor student progress. Help with measuring to the nearest inch if necessary.)It would benefit the students, and you, to take a minute to discuss some organizational issues while measuring. Dimensions of length and width (and ultimately height) are all dependent on the position of the figure. If left the way the rectangles are positioned on the handout, students may overlook the necessity of comparing corresponding sides between rectangles. Students may want to turn rectangles in the same direction to help. However, let them discover this concept through trial and error rather than telling them up front to do so.

Start the following discussion. Let this be the opportunity for students to realize they need to organize their measurements in the chart the same for each rectangle. The organizational method used for this lesson example was the longer side for length and the shorter side for width.

Let's check with the rest of the class and make sure we all agree on the measurements. (Student measurements may vary from these. Please see Teacher Note in the sidebar.)
\#1: $\quad\left(1\right.$ in $x \frac{1}{2}$ in)
\#2: $\quad\left(1 \frac{1}{2}\right.$ in $x 1$ in $)$
\#3: $\quad\left(2 \frac{1}{2}\right.$ in $x 2$ in)
\#4: (3 in $x 2$ in)
\#5: (5 in x 4 in$)$
According to your measurements, do you see any rectangles that are obviously similar? Don't put pencil and paper to it yet, just look at the numbers and see if you can see any relationships between them. Give students time to discuss with partners or groups because they will have to deal with fractions mentally. Although the arithmetic is simple mental math, students tend to be insecure about their mental calculations. The proportional rectangles may NOT be as obvious as we hope they are at first. This is a good way to read the level of understanding with your class.

\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Unit 4, Lesson 2 } \\
\text { Math Lesson - continued } \\
-------------------------------------------------------------~ \\
\text { appear to be mathematically if a student recognizes the additive } \\
\text { relationship of (+2) on the length and width. \#2 and \#4 are NOT } \\
\text { proportional. Students may see the additive relationship of }(+1) \text {. It is } \\
\text { important to address this misconception if it is not naturally brought up } \\
\text { in class. Disprove their proportionality mathematically (equivalent } \\
\text { ratios) and visually (with cut-outs). } \\
\text { MAS Space }\end{array}
$$ <br>
Share your findings during the Measurement Lab today about area and <br>

perimeter. What conclusions did you draw from your investigation?\end{array}\right\}\)| Objectives |
| :--- |
| Read through the math and language objectives, making sure that |
| students understand how they accomplished each. |

Unit 4 Classroom Lesson 2 Attribute Chart Templates

| Attributes |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | organized | helpful | rushed | frustrated | comforting | oblivious |
| Mrs. Comfort |  |  |  |  |  |  |
| Mr. Comfort |  |  |  |  |  |  |
| Mr. and Mrs. <br> Comfort's <br> daughter |  |  |  |  |  |  |



Unit 4 Lesson 2 - Math Lesson
One per student
Similar Rectangle Cut-outs
Cut out rectangles leaving as much black border as possible.


## Unit 4 Lesson 2 - Math Lesson

One per student

## Similar Rectangles Record Sheet

Work with your peers and teacher to complete this activity.

## Task:

- label rectangles from 1-5 in order from smallest to largest
- measure dimensions of each rectangle to the nearest half-inch (length and width)
- label side lengths on each rectangle
- fill in the chart on the right
- answer questions below

1. What organizational strategy did your group use to fill in the Measurement Chart? Why?

| Measurement Chart |  |  |
| :---: | :---: | :---: |
| rectangles | length | width |
| smallest <br> 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| largest <br> 5 |  |  |

2. List all of the proportional relationships you could find between the rectangles and list them in the Proportions Chart. Don't forget the inverse relationships!
3. Did you find any rectangles that were NOT proportional to any other rectangle? How did you know it wasn't proportional?

| Proportions Chart |  |  |  |
| :---: | :---: | :---: | :---: |
| first <br> rectangle | Scale <br> Factor | second <br> rectangle |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

4. List any rectangles that appeared to be proportional but were NOT. Why did they seem proportional? How did your group disprove their proportionality?

One per student

## Similar Rectangles Record Sheet

## Trabaja con tus compañeros y maestro/a para completar esta actividad.

## Tarea:

- Etiqueta los rectángulos de 1-5, de más pequeño a más grande
- Mide las dimensiones de cada rectángulo hasta la media pulgada más cercana (largo y ancho)
- Etiqueta la longitud de los lados en cada rectángulo
- Llena el gráfico a la derecha
- Contesta las preguntas a continuación:

1. ¿Qué estrategia empleó tu grupo para llenar el gráfico de medición? ¿Por qué?

| Gráfico de medición |  |  |
| :---: | :---: | :---: |
| rectángulos | largo | ancho |
| más pequeño |  |  |
| 1 |  |  |
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |
| más grande |  |  |
| 5 |  |  |

2. Haz una lista de todas las relaciones proporcionales que podías encontrar entre los rectángulos y escríbelas en el gráfico de proporciones. ¡No te olvides de las relaciones inversas!
3. Encontraste algunos rectángulos que no fueron propocionales a los otros rectángulos? ¿Cómo sabías que no fue proporcionales?
4. Has una lista de los rectángulos que a primera vista

| Grafico de proporciones |  |  |
| :---: | :---: | :---: |
| Primer <br> rectangulo | Factor <br> de escala | Segundo <br> rectangulo |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  | parecían proporcionales pero que no lo eran. ¿Por qué parecían ser proporcionales cuando en realidad no lo eran? ¿Cómo desaprobaron su proporcionalidad?

Unit 4 Lesson 2 - Math Lesson
One teacher copy

## Similar Rectangles Record Sheet - Teacher Guide

Work with your peers and teacher to complete this activity.

## Task:

- label rectangles from 1-5 in order from smallest to largest
- measure dimensions of each rectangle to the nearest half-inch (length and width)
- label side lengths on each rectangle
- fill in the chart on the right
- answer questions below

Measurements in chart were intended. Please use whatever measurements your copier produces. Measure rectangles prior to lesson and make adjustments to copier settings if needed.

| Measurement Chart |  |  |
| :---: | :---: | :---: |
| rectangles | length | width |
| smallest <br> 1 | 1 | $\frac{1}{2}$ |
| 2 | $1 \frac{1}{2}$ | 1 |
| 3 | $2 \frac{1}{2}$ | 2 |
| 4 | 3 | 2 |
| largest <br> 5 | 5 | 4 |

1. What organizational strategy did your group use to fill in the Measurement Chart? Why? length $=$ long side and width $=$ short side OR width $=$ long side and length $=$ short side Either strategy works mathematically as long as corresponding sides of rectangles are compared.
2. List all of the proportional relationships you could find between the rectangles in the Proportions Chart. Don't forget the inverse relationships!
3. Did you find any rectangles that were NOT proportional to any other rectangle? How did you know it wasn't proportional?
Yes. \#1 was not proportional. Does not have a scale factor with the other rectangles. (Discuss how they worked this out mathematically and/or tactilely.)

| Proportions Chart |  |  |
| :---: | :---: | :---: |
| first <br> rectangle | Scale <br> Factor | second <br> rectangle |
| $\# 2$ | $(\times 2)$ | $\# 4$ |
| $\# 4$ | $\left(\times \frac{1}{2}\right)$ | $\# 2$ |
| $\# 3$ | $(\times 2)$ | $\# 5$ |
| $\# 5$ | $\left(\times \frac{1}{2}\right)$ | $\# 3$ |

4. List any rectangles that appeared to be proportional but were NOT. Why did they seem proportional? How did your group disprove their proportionality?
They look proportional because \#2 to \#3 had a relationship of (+1) and \#4 to \#5 had a relationship of (+2). But a scale factor is a multiplication of dimensions like the ZOOM IN and ZOOM OUT buttons on computers or the magnification settings on a microscope ( $\mathrm{x} 10, \mathrm{x} 20, \mathrm{x} 50$, x100).

Materials

- rectangle cut-outs
- BLM Similar Rectangles Record Sheet
- BLM King of the MountainGame Instructions
- King of the Mountain Game Board
- game markers
- dominoes (1 set per pair)
- graph paper
- scratch paper
- BLM Recursive Review Problems Lessons 1-3

Math Vocabulary
scale factor
similarity
similar
proportion
ratio
Literature Vocabulary
comfort tending stretched reunion banquets balancing arrival relatives

Unit 4, Lesson 2
Follow-up
Grades 7-8
6

Math Objectives:

- Compare measurements of rectangles.
- Work with others to find scale factors and similar rectangles.


## Language Objectives:

- Discuss observations and measurements of shapes and their relationships.
- Explain scale factors to classmates.
- Discuss problem solving strategies with classmates.
- Write solutions for finding scale factors and similar rectangles.
- Explain how to determine when a rectangle is similar to another rectangle.


## Practice and Application

Continue Math Lesson. Circulate the room asking questions to clarify, probe, and enrich.

## QUESTIONS

- How do you know these two rectangles are similar?
- What is the SCALE FACTOR used to determine the dimensions of the larger rectangle?
- Suppose you had started with the larger rectangle - what scale factor would you have used to create the smaller rectangle?
- You have not included these two rectangles as a similar pair. How do you know they are NOT similar?

When you are finished, discuss the findings.
Teach students how to play the game - King of the Mountain. It is a two player game. Be sure students understand the path their game piece will follow throughout gameplay. Arrows lead the way, but check for understanding before they start. Each player has his/her own side of the board.

## Recursive Review

Use BLM Recursive Review Problems found in Lesson 1.

- What savings on his bill can Pedro expect if his favorite sandwich is discounted $10 \%$ off of the regular price of $\$ 8.95$ ?



## Unit 4 Lesson 2 - Follow-up

One per pair

## King of the Mountain - Game Instructions

## Materials:

- King of the Mountain Game Board
- game markers (1 per player)
- dominoes (1 set per pair)
- die ( 1 per pair) $* 10$-sided or 12 -sided dice would be ideal
- graph paper
- scratch paper


## Procedure:

The object of the game is to be the first player to make it to the top of the mountain. You advance on the arrow-led path by correctly creating a similar rectangle using the dimensions provided by a domino and a scale factor determined by the die.

- Place all of the dominoes face down.
- Place the game board so that each player is positioned on their own side of the mountain.
- Each player puts his/her game piece in the start position.
- Player 1 chooses a domino and rolls the die.
- Domino - dimensions of rectangle. Player must announce which number will be used for length and width. Ratio length:width will be used for this game.
- Die - scale factor
- Player 1 calculates the dimensions for a similar rectangle using the information from his/her domino and die combination. Player 2 also calculates the new dimensions. (Player may use graph paper to aid in calculations.)
- Player 1 gives answer. Player 2 confirms.
- Correct answer - Player advances 1 space following arrows.
- Incorrect answer - Player does not advance.
- Repeat process with Player 2.
- Play continues until someone reaches the top and is crowned King of the Mountain!

Ex: Player decides $\mathbf{3}$ is length and $\mathbf{1}$ is width. Sets up ratio as $\frac{\text { length }}{\text { width }}=\frac{\mathbf{3}}{\mathbf{1}}$. Player multiplies $\frac{\mathbf{3}}{\mathbf{1}} \times 5$ to get similar rectangle dimensions of $\frac{\mathbf{1 5}}{\mathbf{5}}$. If player answers $\frac{\mathbf{5}}{\mathbf{1 5}}$ that is INCORRECT because ratio order was not kept consistent with length as numerator and width as denominator.


## Unit 4 Lesson 2 - Follow-up

One per pair

## Rey de la montaña - Game Instructions

## Materiales

- Dominó
- 1 dado
- tablero de juego
- piezas del juego
- Papel borrador y lápiz
- Papel gráfico


## Procedimiento:

El primer jugador que llega a la cima de la montaña gana el juego. Los jugadores avanzan según las flechas y senderos al generar correctamente un rectángulo similar usando las dimensiones representadas por la pieza de dominó y un factor de escala indicado por el dado. .

- Coloca los dominós boca abajo en el centro del área de juego. Coloca el tablero de juego para que cada jugador pueda ver su propio lado de la montaña.
- Los jugadores colocarán sus piezas del juego en el tablero, en los bloques iniciales.
- El Jugador 1 escoge una pieza de dominó y arroja el dado
- Dominó - dimensiones del rectángulo. El jugador tiene que anunciar cuál número representa lo largo del rectángulo y cuál representa lo ancho. Razón:
largo:ancho se utilizará para el juego.
- Dado - escala de factor
- Jugador 1 calcula las dimensiones de un rectángulo similar usando la información prestado por la combinación de pieza de dominó y dado. Jugador 2 también calcula las nuevas dimensiones. (Los jugadores pueden usar papel gráfico para hacer las calculaciones.)
- Jugador 1 da la repuesta. Jugador 2 confirma la respuesta.
- Respuesta correcta - El jugador mueve 1 espacio siguiendo las flechas.
- Respuesta incorrecta- El jugador no mueve
- El juego continúa con el siguiente jugador.
- El juego continúa de esta manera hasta que alguien llega a la parte de arriba de la montana y se corona "rey".

Ex: El jugador decide que $\mathbf{3}$ es la longitud y $\mathbf{1}$ es la enchura. La razón es
$\frac{1 \text { argo }}{\text { a } \text { ncho }}=\frac{\mathbf{3}}{\mathbf{1}}$.




Math Vocabulary
scale factor
similarity
similar
proportion
ratio

## Literature Vocabulary

comfort
tending
stretched
reunion
banquets
balancing
arrival
relatives

Unit 4, Lesson 2 Grades 7-8
Snack Fractions
Students should wash their hands before this activity if using food items.

## Snack Fractions

Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack.

The strategies suggested are certainly not the only strategies that could be used to solve the unit rate and proportion problems, but are helpful to students who don't yet understand the short cuts.

Please be sure to LABEL every part of proportions - students often get lost in what the numbers represent.

## Sharing Between Two People

- 7-8 graders should not have a problem with this portion. If they do, you know you need to spend more time developing the concept rather than jumping into the arithmetic processes. There are plenty of opportunities during the regular curriculum for this.


## Sharing Between Six People

- One stumbling stone could be the comparison of proportional unit costs of halves and sixths. Simply set up proportions for students to see the difference, and be sure to label each number in the proportions.

Snack Operations (optional)

- If your students do not yet understand percent of decrease, don't do this now, but collect the BLMs and come back at a later time to complete.

Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, and extend.

Finally, let them enjoy their snack.

## Snack Fraction Journal Writing: BLM Snack Bag Snack Fractions

Explain how to find the percent of the snack $\frac{1}{6}$ represents.
Objectives: Review the objectives with the class, making sure they understand how they achieved each.

## Unit 4 Lesson 2 - Snack Fractions

One per student

## Snack Bag - Snack Fractions

## Share Between Two People



Write a fraction representation of your snack portion: $\qquad$

Write a decimal representation of your snack portion: $\qquad$

What percent of the snack is your portion? $\qquad$

There are $\qquad$ snack bags in the room. The total cost for all the snacks was

What is the ratio of snacks to students?

What is the cost of each student's portion of the snack? $\qquad$

## Sharing Between Six People

Write a fraction representation of your snack portion: $\qquad$

Write a decimal representation of your snack portion:

What percent of the snack is your portion?

Refer to the number of snacks in the room and the actual cost based on sharing with a partner. How would sharing the snack among six students have changed the proportion of snacks to students, the number of snacks that would have been purchased for the group, and the total cost of the snack?

## Snack Operations

By what percent would your portion decrease if you shared with six people rather than with a partner?

## Unit 4 Lesson 2 - Snack Fractions

One per student

## Snack Bag - Snack Fractions

## Compartir entre dos personas



Escribe una representación fraccioinaria de tu porción:

Escribe una representación decimal de tu porción: $\qquad$
¿Qué porcentaje del refrigerio es tu porción? $\qquad$

Hay $\qquad$ bolsas de comida en el salón de clase. El costo total de la comida fue $\qquad$
¿Cuál es la relación de refrigerios a estudiantes? $\qquad$
¿Cuál es el costo de la porción de refrigerio de cada estudiante? $\qquad$

## Compartir entre seis personas

Escribe una representación fraccioinaria de tu porción: $\qquad$

Escribe una representación decimal de tu porción: $\qquad$
¿Qué porcentaje del refrigerio es tu porción? $\qquad$

Considera el número de refrigerios en el salón de clase y el costo real basado en compartir con un compañero.
¿Cómo habrían cambiado la proporción de refrigerios a estudiantes, el número de refrigerios que se habrían comprado para el grupo y el costo total del refrigerio si se hubieran compartido los refrigerios entre seis estudiantes?

## Operaciones con refrigerios

¿En qué porcentaje disminuiría tu porción si compartieras con seis personas en vez de con un compañero? By what percent would your portion decrease if you shared with six people rather than with a partner?
$\qquad$ ,

The math strategy we used today was...

I think that will be helpful when I...

$\qquad$

One thing I'd like to do at home using this math with the family is...
$\qquad$
$\qquad$
$\qquad$

Sincerely,

Unit 4 Lesson 2 - Family Fun
Querido $\qquad$ ,

La estrategia que usamos en la clase de mathematics hoy fue:
$\qquad$
$\qquad$
Será útil cuando...
$\qquad$
$\qquad$
$\qquad$
Una cosa que me gustaría hacer con esta estrategia en casa con la familia es...

Sincerely,

Materials

- BLM Models and DesignsMeasurement Lab Record Sheet
- BLM Solve It! Problems 3-4
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 2-3 CGI Spaghetti and Meatballs for All


## Math Objectives

- Solve word problems using a variety of strategies and defend strategies.
- Model and solve 3-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain method used to rename the target number.

Math Vocabulary
scale factor
similarity
similar
proportion
ratio
Literature Vocabulary
comfort
tending stretched reunion banquets balancing arrival relatives

## Unit 4, Lesson 3 <br> Grades 7-8 <br> Daily Routine <br> 

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - omit
- Lesson 2 - area
- Lesson 3 - similar figures


## Lesson 3 Materials

- BLM Models and Designs

Lesson 3 Student Groups

- Answer questions on BLM Models and Designs

Solve It! Multi-step problem solving

- Lesson 1 - omit
- Lesson 2 - pairs, 3-step problem
- Lesson 3 - pairs, 3-step problem


## Fraction Action

- Lesson 1 - omit
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot
$X$ Marks the Spot
- Lesson 1 - omit
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot

CGI

- Lesson 1 - omit
- Lesson 2 - rate, multiplication (assessment item 7)
- Lesson 3 - price, partitive (assessment item 6)

| Assessment Items <br> As a result of this unit, students will be prepared for the following assessment items: $2,3,4,5,6,7$ | Unit 4, Lesson 3 Grades 7-8 <br> Daily Routine - continued 6is |
| :---: | :---: |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
|  | $\frac{\text { OPTIONAL }}{\text { Target Number }}$ <br> - Lesson 1 -omit |
| TEKS for this Unit | - Lesson 2 - Target Number 15 |
| $7^{\text {th- }} 7.2 \mathrm{D}, 7.3 \mathrm{~B}, 7.4 \mathrm{~B}$, | - Lesson 3 - Target Number 45 |
| -8.2D, | Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

Unit 4 Lesson 3 - Daily Routines - Measurement Lab
One per student

## Models and Designs - Measurement Lab Record Sheet

You are a stained glass window designer. The projects below are your creation. Read each problem carefully, using your ruler and the illustration to help you solve each,


This illustration to the right is a stained glass window that you designed.

You purposely placed the window so that it would reflect on the floor in a similar pattern to those in the window.

The large rectangles in the window measure 12 inches long and 2 inches wide. What is the width of the entire reflected rectangle if the length of the reflection is 60 inches long?


The model to the left is your beginning sketch of a staircase you designed.

The actual staircase was built with a SCALE FACTOR of 40. How many feet tall was the actual staircase?

## Unidad 4

Lección 3 - Rutinas diarias, laboratorio de Medidas - Modelos y Diseños (Uno por estudiante)
Eres un diseñador de ventanas con vitrales. Los proyectos debajo son tu creación. Lee cada problema cuidadosamente, usando una regla y la ilustración para ayudarte a resolver cada uno.


El diseño de la izquierda es tu modelo para una pieza de un diseño más grande. Cuando esté terminado, el vitral deberá enmarcarse y colgarse dentro de una ventana más grande para reflejar la luz.

El marco para esta pieza tendrá que ser de 7.5 pulgadas de ancho. Si el marco es similar, ¿Qué tan largo deberá ser?

La ilustración a la derecha es un vitral que tú diseñaste.
Colocaste la ventana con el propósito de que se reflejara en el piso con un patrón similar al de la ventana.

Los rectángulos grandes en la ventana miden 12 pulgadas de largo y 2 pulgadas de ancho. ¿Cuál es el ancho del rectángulo completo reflejado si la longitud del reflejo es de 60 pulgadas de largo?



El modelo de la izquierda es tu dibujo inicial de unos escalones que diseñaste.

El escalón real fue construido con un FACTOR DE ESCALA de 40. ¿De cuántos pies de alto quedaron las escaleras reales?

## Unit 4 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per student
Solve your own problem today, showing your work. Verify your partner's solution when you both finish your own. Discuss your work.

## Partner \#1 - Problem 3:

Martin charges a flat rate of $\$ 75$ per lawn, plus $\$ 20$ an hour over 4 hours of work. He also charges a clean-up fee of $\$ 5.00$ per bag if he has to remove bags of rubbish to the dump. Mr. Herrera had a really big yard that took Martin 8.5 hours to complete, and Martin had 21 bags of leaves and grass clippings to remove. What did Martin charge Mr. Herrera for the job?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 4 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per student
Hoy, resuelve tu propio problema, mostrando el procedimiento. Verifica la solución de tu compañero cuando ambos terminen de hacerlo por sí mismos. Hablen sobre su trabajo.

## Compañero \# 1 - Problema 3:

Martin cobra una tarifa fija de $\$ 75$ por cada servicio de mantenimiento de césped, más $\$ 20$ por hora por más de 4 horas de trabajo. Además, cobra una tarifa de limpieza de $\$ 5.00$ por bolsa si tiene que llevar bolsas de basura hasta el vertedero. El Sr. Herrera tenía un jardín muy grande, y a Martin le llevó 8.5 horas terminar su trabajo. Martin tenía 21 bolsas de hojas y césped cortado para retirar. ¿Cuánto le cobró Martin al Sr. Herrera por el trabajo?

| Solución del problema <br> Nombre: | Verificación del problema <br> Nombre: |
| :--- | :--- |
|  |  |

## Unit 4 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per pair
Solve your own problem today, showing your work. Verify your partner's solution when you both finish your own. Discuss your work.

## Partner \#2 - Problem 4:

Martin knows that cleaning gutters can take all day, and he'll have lots of bags of yard rubbish to take to the dump. He has a flat charge of $\$ 225$, which includes cleaning the gutters, washing down any sidewalks or patios affected by the gutter cleaning and hauling away 20 bags of yard rubbish. Mrs. Merriweather had a very small house. Martin gave her a $30 \%$ discount for the job. She gave Martin a $15 \%$ tip on the discounted price. How much less did Martin make than the $\$ 225$ he usually charges for gutters?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 4 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per pair
Hoy, resuelve tu propio problema, mostrando el procedimiento. Verifica la solución de tu compañero cuando ambos terminen de hacerlo por sí mismos. Hablen sobre su trabajo.

## Compañero \# 2 - Problema 4:

Martin sabe que limpiar canaletas le puede llevar un día entero, y tendría muchas bolsas de basura para llevar al vertedero. Tiene una tarifa fija de $\$ 225$, en la que incluye limpiar las canaletas, lavar cualquier acera o patio afectados por la limpieza de la canaleta y depositar 20 bolsas de desechos de césped. La Sra.
Merriweather tenía una casa muy pequeña. Martin le hizo un $30 \%$ de descuento por el trabajo. Ella le dio a Martin una propina del $15 \%$ sobre el precio descontado. ¿Cuánto dinero menos ganó Martin de los $\$ 225$ que normalmente cobra para las canaletas?

| Solución del problema <br> Nombre: | Verificación del problema <br> Nombre: |
| :--- | :--- |
|  |  |

Unit 4 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

Materials:
None for this activity

## Task:

Maria's pickle recipe called for $\frac{1}{4}$ cup of vinegar per 10 cups of water for 5 pounds of cucumbers.
If she only had 1 pound of cucumbers, how much vinegar and water did she need?

## $X$ Marks the Spot

Write an equation for each of the statements.
Monty earns \$12 an hour walking dogs which is $\$ 3$ more than a third as much as he does painting houses.

At the Middle School Dance, the students danced 12 slow dances, which was 6 less than half the number of fast dances.

Unit 4 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materiales: <br> Ninguno para esta actividad

## Tarea:

La receta de pepinillos de María lleva $\frac{1}{4}$ taza de vinagre por 10 tazas de agua por 5 libras de pepinos. Si solo tiene 1 libra de pepinos, ¿cuánto vinagre y agua necesita?

## $X$ Marca el sitio

Escribe una ecuación para cada oración.

Monty gana $\$ 12$ por hora por pasear perros, lo que es $\$ 3$ más que un tercio de lo que hace pintando casas.

En el baile de la escuela intermedia, los estudiantes bailaron 12 canciones lentas, lo que fue 6 menos que la mitad del número de bailes rápidos.

[^0]
## Math Vocabulary

scale factor
similarity
similar
proportion
ratio

## Literature Vocabulary

comfort
tending
stretched
reunion
banquets
balancing
arrival
relatives

ELPS (English Language
Proficiency Standards):
2D, 2I, 3C, 3J, 4F, 4I

## Unit 4, Lesson 3 <br> Grades 7-8 <br> Classroom Lesson <br> Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Solve similarity problems using any strategy including scale factor and equivalent ratios.


## Reading Objective

- Find text evidence for the trait that best describes a character.


## Language Objectives:

- Use a Gallery Walk as an opportunity to discuss similarities and differences between your understanding of the vocabulary words and other students' understandings.
- Explain how to find scale factors and use them to solve similarity problems.
- Analyze character traits from author's clues and illustrations.


## BEFORE READING

## Practice and Application - Vocabulary

In Lesson 2 we created these wonderful Silly Association Posters. Today you are going to take a Gallery Walk to view and discuss the posters. We'll divide into groups of three. (Use a group of four if you need to balance the class, but threes work better.) Each of you will need a pencil and notebook to use as you walk along the gallery, talk to one another about the associations that seem to be made in the poster.

- Write the Silly Association sentence on the record sheet.
- What is the first thing that strikes you about the poster?
- What associations seem to be made in the sentence? The art work?
- How is this poster different from your understanding of the words used?
- How is this poster similar to your understanding of the words used?
- What positive comment or clarifying question would you like to share with the creator of the poster?

As a group, you are not to visit the posters that your members made. You will have 15 minutes to browse the gallery. Take your time, talk softly to one another as if you are in an art gallery. You are not expected to view all of the posters. Please select a poster that is not being viewed. We will gather in 15 minutes. You may begin.




Unit 4
Lesson 3 - Classroom Lesson - Gallery Walk Discussion (5 per student)
Silly Association sentence: $\qquad$

What is the first thing that strikes you about the poster?

What associations seem to be made in the sentence?
.........the art work?

How is this poster different from your understanding of the words used?

How is this poster similar to your understanding of the words used?

What positive comment or clarifying question would you like to share with the creator of the poster?

Unidad 4
Lección 3 - Lección de Salón de Clases - Discusión de Caminata por la Galería (5 por estudiante)

Frase tonta de asociación:
¿Qué es lo primero que te llama la atención del poster?
¿Qué asociaciones parecen haberse hecho en la oración?
$\ldots . . . . . . ¿ E l$ arte?
¿Cómo difiere este poster de tu entendimiento de las palabras usadas?
¿En que es similar este poster a tu entendimiento de las palabras usadas?
¿Qué comentario positivo o pregunta aclaradora te gustaría compartir con el creador del poster?

| Materials <br> - BLM Thinking Smaller <br> - ruler | Unit 4, Lesson 3 Grades 7-8 <br> Math Lesson 6is |
| :---: | :---: |
| Math Vocabulary <br> scale factor <br> similarity <br> similar <br> proportion <br> ratio | Math Objectives: <br> - Use any strategy to determine the dimensions of a model using a specified scale factor. <br> - Make a visual representation to solve scale factor (model) problems. |
| Literature Vocabulary <br> comfort <br> tending <br> stretched <br> reunion <br> banquets <br> balancing <br> arrival <br> relatives | Language Objectives: <br> - Discuss problems solving strategies with peers. <br> - Write solutions for solving the model problem. <br> - Explain how to make a model using a specified scale factor. |
|  | Building Background <br> We've been using SCALE FACTORS that make similar 2-dimensional shapes. But when an architect creates a model, he/she actually has to think in 3-dimensions. They think about the finished product, the building dimensions, then scale down, or reduce the size to a workable model. We're going to think 3-D smaller today. |
| ELPS (English Language Proficiency Standards): 2C, 2E, 2F, 3D, 3E, 3J, 4F, 5G | Comprehensible Input |
|  | Look carefully at the question on the BLM Thinking Smaller. <br> - What is the SCALE FACTOR? $\left(\frac{1}{10}\right)$ <br> - Will the model be larger or smaller than the original? (smaller) <br> - How do you know? (You will be multiplying by 1/10. When you take one-tenth of something, you only have a small portion of it.) |
|  | Let's work through this Thinking Smaller problem sheet together. <br> - What does the paper tell you this rectangle under the cabin represents? <br> - The rectangle under the log cabin represents the dimensions of the floor of the cabin. <br> - Where can you find the data that tells you the dimensions of the cabin? <br> - What are the dimensions of the log cabin? (30 feet long and 20 feet wide) |
|  | Look back at that rectangle again. Each little mark represents one foot. Let's label the length ( 30 ft .) and width ( 20 ft .) (do so). <br> - What is it that I want to find? (model dimensions based on scale factor) <br> - What is my SCALE FACTOR? $\left(\frac{1}{10}\right)$ |


| Teacher Note <br> With compatible numbers like these, it isn't necessary to walk through tedious algorithms unless the procedure is the focus. The concepts of scale factors, percentages, ratios, and similarity are the focus of this lesson, so it is recommended students practice their mental math skills while working the problems. | Unit 4, Lesson 3 Grades 7-8 <br> Math Lesson - continued obs |
| :---: | :---: |
|  | Discuss how you will determine the dimensions of the scale model with the data we have. (pause for discussion) |
|  | One way is to take one-tenth of the known measurements. How would you translate ONE-TENTH OF KNOWN MEASUREMENTS into a number sentence? |
|  | I'm going to start with the known measurement, width. The width is 20 feet. So... $\begin{array}{ccccc} \text { (scale factor) } & \text { x } & \text { (known measurement) } & =(\text { model measurement }) \\ \left(\frac{\mathbf{1}}{\mathbf{1 0}}\right) & \mathbf{x} & \mathbf{2 0} \mathbf{~ f t .} & = & \frac{\mathbf{2 0}}{\mathbf{1 0}} \end{array}$ |
|  | When multiplied algorithmically students must then perform the operation of division $(20 \div 10)$ to find the new model measure. This is certainly acceptable. However, remind students that they learned very valuable mental math skills in the percent unit in regards to finding onetenth (or $10 \%$ ) of something. A scale factor of $\left(\frac{1}{10}\right)$ is no different |
|  | than saying "the model cabin will be $10 \%$ of the size of the actual cabin." Practice your mental math skills in this problem: <br> What is $\left(\frac{1}{10}\right)$ of a group of 20 feet? |
|  | (2-Students can think of a decimal moving left one place value spot, or of breaking 20 into 10 equal pieces.) |
|  | Let's make sense of our answer of 2 . What does that number represent? (It represents the width of our scale model.) |
|  | So, our model's width would be 2 feet. (Place a heavy pencil mark on the 2 ft . mark in the upper left hand corner on the width of the cabin floor. You are going to "draw" the dimensions of the scaled model in that corner.) |
|  | Length: (30 feet) |
|  | $\begin{array}{cccc} \text { (scale factor) } & \mathrm{x} & \text { (known measurement) } & =\text { (model measurement) } \\ \left(\frac{\mathbf{1}}{\mathbf{1 0}} \mathbf{)}\right. & \mathbf{x} & \mathbf{3 0} \mathbf{f t .} & =\frac{\mathbf{3 0}}{\mathbf{1 0}} \end{array}$ |
|  | Use your mental math skills to calculate one-tenth, or $10 \%$, of 30 feet. 30 divided equally into 10 pieces $=$ ???? ( 3 feet) So our model's length will be 3 feet. (Place a heavy pencil mark on the 3 ft. mark in the upper left hand corner on the length side of the cabin floor.) |

## Technology Option

Demonstrate dilating (zooming in) or contracting (zooming out) a picture on a projector screen if available. Students should pay close attention to the "line" your mouse follows.


Unit 4, Lesson 3
Math Lesson - continued
Grades 7-8

Now draw the $2 \times 3$ rectangle in the corner, using your ruler so that you have straight lines. What part of the cabin have we just drawn? (the floor from a birds-eye view)

There's a way to test figures for proportionality. When you are working on the computer and you need to enlarge or shrink a picture, what do you do? (There are several ways to accomplish this but the most common is to click the picture, and then drag your mouse, either out or in, to achieve your desired result. Dragging out maximizes the picture, and dragging in minimizes it.)

Next time you resize a picture on the computer pay close attention to the "line" that your mouse makes when moving inward or outward. That line is real and created mathematically when a scale factor is present. Therefore, proportional figures (similar figures) will have a straight "line of dilation" so to speak.

For instance, the larger rectangle on your graph reflects the length and width (in feet) of the actual cabin. ( $20 \times 30$ ) You sketched the scaled down measurements in the corner. ( $2 \times 3$ ) Both figures share an origin point in the upper left corner. If the figures are proportional then a "line of dilation" will cut through BOTH rectangles from the origin to its diagonal vertex.

Have students test their rectangles for proportionality using their rulers as a straight edge. Mark the diagonal line. Did it cut through corresponding points? (yes)

Now you can use this test to make sure your scaled drawings are proportional to the original measurements. There are more measurements to find before we can build that model. Let's get started.
(Continue finding the measures of the reduced model and completing the Thinking Smaller sheet. Students should be working with you, so do give time for them to compute.)

## MAS Space

Create your own design model that you intend to either enlarge or reduce. Share your model and work together to figure out how small or large the actual design would be!

## Objectives:

Read through the math and language objectives, making sure that students understand how they accomplished each.
 Thinking Smaller Unit 4 Lesson 3 - Math Lesson

One per student
Unit 4 Lesson 3

If you were going to make a model of this cabin to a SCALE FACTOR of $\frac{1}{10}$, what would all of the dimensions be? Show your work in the space
provided. Fill in the chart.


| $\begin{aligned} & \text { 릴 } \\ & \text { 局 } \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \cdot \underline{0} \\ & \stackrel{0}{0} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | $\frac{5}{3}$ |  |  |
|  | $\begin{aligned} & 5 \\ & \stackrel{5}{0} \\ & 0 \end{aligned}$ |  |  |
|  | $$ |  |  |
|  | $\frac{5}{3}$ |  |  |
|  | $\begin{aligned} & \text { 喜 } \\ & \text { E } \end{aligned}$ |  |  |
|  |  | $\stackrel{\text { ® }}{\vec{E}}$ |  | When the scale factor is a fraction, I know that the new scaled dimensions will be (smaller or larger) than the original because...

Esta es una pequeña cabaña de una sola habitación en el bosque. El piso mide 20 pies por 30 pies, y la

## Unit 4 Lesson 3 <br> Work with your teacher and class to complete the activity. Esta es una pequeña cabaña de una sola habitación en el bos cabaña tiene 9 pies de alto en la cima. La chimenea es de 3 p Si <br> Thinking Smaller <br> Muestra tu trabajo en el rectángulo abajo. <br> Muestra tu trabajo en el rectángulo abajo

Si vas a hacer un modelo de esta cabaña en un FACTOR ESCALA de $1 / 10$, ¿Cuáles serían las dimensiones?

$$
=2
$$

(pequeñas/grandes) que el original porque:

|  | Cabaña modelo |  |  | chiminea |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | largo | ancho | alto | largo | ancho | alto |
| life <br> sized |  |  |  |  |  |  |
| scale <br> model |  |  |  |  |  |  |

Materials

- Sears Tower article
- BLM Thinking Smaller-Sears Tower
- Family Fun Generic Game Board
- Family Fun Movement cards
- Unit 4 Family Fun-Problem Cards
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 4 Family Fun Special $7^{\text {th }}-$ $8^{\text {th }}$ Game Instructions
- game markers
- BLM Recursive Review Problems Lessons 1-3

Math Vocabulary
scale factor similarity
similar proportion ratio

## Literature Vocabulary

comfort
tending
stretched reunion banquets balancing arrival relatives

Unit 4, Lesson 3
Follow-up
Grades 7-8
${ }^{3}$

## Math Objectives:

- Use any strategy to determine the dimensions of a model using a specified scale factor.
- Make visual representations to help solve scale factor (model) problems.


## Language Objectives:

- Discuss problem solving strategies with peers.
- Write out solutions for solving the model problem.
- Explain how to make a model using a specified scale factor.
- Write an explanation to determine whether a scale factor is enlarging or reducing an object.


## Practice and Application

Students work in teams to solve the Thinking Smaller, Sears Tower sheet. The configuration of the nine tubes is just an option - it is not the actual configuration; although the measures of the tubes are correct.

## QUESTIONS

- Explain your strategy for solving the problem.
- What is the SCALE FACTOR used to determine the new dimensions?
- What is this question asking you to do?


## Recursive Review

Use BLM Recursive Review Problems found in Lesson 1.

- Gary's dinner bill at the restaurant was $\$ 42.95$. If he leaves the server a $20 \%$ tip, how much will his bill be altogether?


## [1] Writing Topics

## Independent Writing Topic

Students will have a daily writing activity that will incorporate the day's focus math vocabulary.

- Explain how you know whether you are reducing or enlarging a figure by looking at the scale factor.


## Family Fun Game

Students will take the Family Fun game materials home to teach and play with their families.

## Objectives

Review the math and language objectives to make sure that they were accomplished and that the students realize how they were accomplished.

## Sears Tower Article

Sears Tower - Chicago, IL
The Sears Tower, now called the Willis Tower under new owners, is a beautiful landmark in Chicago. Construction started in 1970 and was completed in 1973. It is 1454 feet tall and weighs a whopping 445,000,000 pounds! An observation deck at $1,353 \mathrm{ft}$., is the highest observation point in Chicago, and a very popular attraction. When it was built, the Sears Tower was the tallest building in the world, and maintained that title until 1997 when the Petronas twin towers in Malaysia were constructed. Today the tallest building in the world is the Burj Dubai in Dubai. If you watched the movie Mission Impossible 4, you saw Tom Cruise trying to walk up that building.

The Sears Tower is constructed of 9 square steel tubes, each measuring $75 \mathrm{ft} \times 75 \mathrm{ft}$ and arranged in groups of threes. The height of the Tower is 1730 feet from street level to the top of the tallest antenna.


Unit 4 Lesson 3 - Follow-up

## 6

One per student

## Sears Tower Article

## Sears Tower - Chicago, IL

La Torre Sears, ahora llamada la Torre Willis por los nuevos dueños, es un hermoso lugar muy conocido en Chicago. Su construcción comenzó en 1970 y se completó en 1973. Tiene 1454 pies de alto y ipesa 445,000,000 libras! Un observatorio a los 1,353 pies, es el punto más alto de observación en Chicago, y una atracción muy popular.
Cuando se construyó, la Torre Sears era el edificio más alto del mundo, y mantuvo ese título hasta 1997 cuando se construyeron las torres gemelas Petronas de Malasia. Hoy en día, el edificio más alto del mundo es el Burj Dubái en Dubái. Si viste la película Misión Imposible 4, viste a Tom Cruise tratando de caminar hacia arriba de ese edificio.

La Torre Sears está construida con 9 tubos cuadrados de acero, cada uno midiendo 75 pies x 75 pies y acomodados en grupos de tres. La altura de la Torre es de 1730 pies desde el nivel de la calle a la punta de la antena más alta.


Unit 4 Lesson 3 - Follow-up
${ }_{0}^{60}$
One per student

## Thinking Smaller - Sears Tower

Work with a partner or group and use the information from the article to complete this activity.

## Scale Model

If you were to make a model of the Sears Tower using a scale factor of $\frac{1}{25}$, the dimensions would be:

- Tubes $\qquad$ x $\qquad$
- The perimeter of each tube $\qquad$
- The perimeter of configuration shown in figure $\qquad$
- The height to the top of the tallest tower $\qquad$


## Actual Tower

This is one possible configuration of the 9 tubes. If each tube on the Sears Tower is a 75 foot square, what is the:

- The perimeter of each tube
- The perimeter of configuration shown in figure
- The width of the configuration at its longest point
- The length of the configuration for 2 tubes $\qquad$
3 tubes $\qquad$
4 tubes $\qquad$


Unit 4 Lesson 3 - Follow-up
${ }_{0}^{60}$
One per student

## Thinking Smaller - Sears Tower

Work with a partner or group and use the information from the article to complete this activity.

## Modelo a Escala

Si fueras a hacer un modelo a escala de la Torre Sears usando un factor escala de $\frac{1}{25}$, cuáles serían las dimensiones de:

- Tubos $\qquad$ x $\qquad$
- el perímetro de cada tubo:
- el perímetro de la configuración de los tubos según se muestra debajo: $\qquad$
- la altura a la parte más alta de la torre más alta $\qquad$


## Torre Real

Esta es una posible configuración de los 9 tubos. Si cada tubo en la Torre Sears es un cuadro de 75 pies, cuál es el:

- perímetro de cada tubo:
- perímetro de la configuración:
- el ancho de la configuración en su punto más largo $\qquad$
- largo de la configuración para:

| 2 tubos |  |
| :--- | :--- |
| 3 tubos | $\square$ |
| 4 tubos | $\square$ |



```
Materials
- 3 graham crackers (whole
    sheets)
- 2T peanut butter *Allergy
        Warning - please substitute a
        different spread for the entire
        class if nut allergies are
        present.
```

- 2 paper dessert plates
- 2 paper towels
- 2 plastic knife
All items listed above per partner
pair
- BLM Crackers and Peanut Butter-Snack Fractions


## Math Objectives

- Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals.
- Convert between fractions, decimals, whole numbers and percents.
- Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios).
- Estimate and find solutions to application problems involving percent.


## Language Objectives

- Discuss how ratios and proportions can be used to solve real-world problems.

Math Vocabulary
scale factor
similarity
similar
proportion
ratio
Literature Vocabulary
comfort
tending
stretched
reunion
banquets
balancing
arrival
relatives

## Unit 4, Lesson 3 <br> Grades 7-8 <br> Snack Fractions <br> 

Students should wash their hands before this activity if using food items.

## Snack Fractions

Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack.

The strategies suggested are certainly not the only strategies that could be used to solve the unit rate and proportion problems, but are helpful to students who don't yet understand the short cuts.

Please be sure to LABEL every part of proportions - students often get lost in what the numbers represent.

## Sharing Between Two People

- 7-8 graders should not have a problem with this portion. If they do, you know you need to spend more time developing the concept rather than jumping into the arithmetic processes. There are plenty of opportunities during the regular curriculum for this.


## Sharing Between Eight People

- One stumbling stone could be the comparison of proportional unit costs of halves and sixths. Simply set up proportions for students to see the difference, and be sure to label each number in the proportions.

Snack Operations (optional)

- If your students do not yet understand percent of decrease, don't do this now, but collect the BLMs and come back at a later time to complete.

Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, and extend.

## Snack Fraction Journal Writing: BLM Crackers and Peanut Butter Snack Fractions

How do you think the unit cost of the snacks would be affected when sharing in fourths to sharing in eighths? Justify your answer.

Objectives: Review the objectives with the class. Make sure they understand how they achieved each.

## Unit 4 Lesson 3 - Snack Fraction

One per student

## Crackers and Peanut Butter - Snack Fractions

## Share Between Two People

Write a fraction representation of your snack portion:

Write a decimal representation of your snack portion:

What percent of the snack is your portion?

There are $\qquad$ snack bags in the room. The total cost for all the snacks was

What is the ratio of snacks to students?

What is the cost of each student's portion of the snack?

## Sharing Between Eight People

Write a fraction representation of your snack portion: $\qquad$

Write a decimal representation of your snack portion:

What percent of the snack is your portion?

Refer to the number of snacks in the room and the actual cost based on sharing with a partner. How would sharing the snack among six students have changed the proportion of snacks to students, the number of snacks that would have been purchased for the group, and the total cost of the snack?

## Snack Operations

By what percent would your portion decrease if you shared with six people rather than with a partner?

Unidad 4 Lección 3 - Fracciones de refrigerios
Una por estudiante
Galletas saladas y mantequilla de maní - Fracciones de refrigerios
Compartir entre dos personas
Escribe una representación en fracciones de tu porción de refrigerio:
Escribe una representación decimal de tu porción de refrigerio:
¿Qué porcentaje del refrigerio es tu porción?
Hay $\qquad$ bolsas de refrigerios en el salón de clase. El costo total de todos los refrigerios fue de
¿Cuál es la relación de refrigerios a estudiantes?
¿Cuál es el costo de la porción de refrigerio de cada estudiante?

## Compartir entre ocho personas

Escribe una representación en fracciones de tu porción de refrigerio: $\qquad$
Escribe una representación decimal de tu porción de refrigerio: $\qquad$
¿Qué porcentaje del refrigerio es tu porción?
Considera el número de refrigerios en el salón de clase y el costo real basado en compartir con un compañero.
¿Cómo habrían cambiado la proporción de refrigerios a estudiantes, el número de refrigerios que se habrían comprado para el grupo y el costo total del refrigerio si se hubieran compartido los refrigerios entre seis estudiantes?

## Operaciones con refrigerios

¿En qué porcentaje disminuiría tu porción si compartieras con seis personas en vez de con un compañero?

## Unit 4 Lesson 3 - Family Fun

Dear $\qquad$ ,

We learned a few more skills in math involving similar figures and scale factor!

Here are some strategies I'll need to solve the problems in this unit's game today...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Sincerely,

Unit 4 Lesson 3 - Family Fun
Querido $\qquad$

Aprendimos mas en la clase de matematicas hoy sobre figuras semejantes y la factor de escala.

Estas son algunas estrategias que necesito para resolver los problemas en el juego de esta unidad.

## Atentamente,

| This portion of the curriculum is NOT required, but should be used to supplement and enrich the unit's activities. | Enrichment Suggestions <br> Unit 4 Spaghetti and Meatballs for All <br> Math Walk <br> Look around the campus. Is there an area that is set up for a special purpose? Walk the area and see how efficiently it functions for its purpose. Then consider what would happen if that area were arranged differently? How would it change the number of people who could access the area? The traffic flow in and out of the area? The access for people with different needs? What other functions might be altered because of a change? Discuss in small groups. Create a 2 -sided poster which illustrates on one side the "as is" area and what its functions are and on the other side the "changes to the area" and how the changes would affect the functionality. <br> Technology Connection <br> - Fraction, Decimal, Percent practice, including games: http://www.bbc.co.uk/skillswise/numbers/fractiondecimalpercentag e/comparing/comparingall3/index.shtml <br> - A Few More Games: http://www.quia.com/jg/65724.html <br> More Curriculum Connection Ideas off the Web <br> - Social Studies: What is the history of spaghetti? When and where did people first start to eat this popular meal? There seems to be a differing opinion. Decide what you think and debate the issue. http://www.online-gourmet-foods.com/history-of-spaghetti.html http://www.bestofsicily.com/mag/art73.htm http://www.inmamaskitchen.com/FOOD IS ART/pasta/historypast a.html <br> - Science: Did you know that there is a science to cooking? Check what are the physical changes to dry spaghetti as it is cooked? Investigate using one of these experiments. <br> http://www.gk- <br> 12.osu.edu/Lessons/4th\%20Grade/Spagetti\%20Physical\%20Chang e.pdf <br> http://www.ehow.com/info 7966876 spaghetti-scienceactivities.html <br> - Art: Art, - Pasta Art <br> Modify this activity by having students first look at the various types of pasta available to them, then sketch a picture and finally fill in with the appropriate pasta pieces. <br> http://tlc.howstuffworks.com/family/pasta-crafts $1 . h$ htm |
| :---: | :---: |


| Problem Letter | Kinder | 1-2 | 3-4 | 5-6 | 7-8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 11 seeds | 23 | 3 | $6 \frac{1}{4}$ or 6.25 | $\begin{aligned} & \text { short }=6 \\ & \text { long }=8 \end{aligned}$ |
| B | 4 seeds | 23 | 9 | $\frac{5}{8}$ or 0.625 cups | 6 |
| C | 4 seeds | 39 | 42 | \$423,294,920.10 | 1 |
| D | 5 seeds | 4 | 6 seedlings | 2134.448 | 3 |
| E | 10 seeds | 17 | 8 bundles | \$7400 down | (x3) |
| F | 3 seeds | 13 | 50 bundles | 10\% water | (x $\frac{1}{3}$ ) |
| G | (see special instructions) | 14 |  | \$48.50 tax | $\left(x \frac{1}{2}\right)$ |
| H | (see special instructions) | 68 |  | \$33 late fee | (x3) |
| I | 2 equal parts | 23 |  | \$375 earned | (x5) |
| J | Nickel | Divided into four equal parts | 3.21 | \$39.64 | (x3) |
| K | Dime | Parts are equal | $\begin{aligned} & 6 \times 7=42 \\ & 7 \times 6=42 \\ & 42 \div 7=6 \\ & 42 \div 6=7 \\ & \hline \end{aligned}$ | \$12.20 tip | (x5) |
| L | Quarter | 5 | xx xx xx <br> xx xx xx <br> xx xx xx | 25\% tip | (x5) |
| M | Penny | $4+3=7$ | Eleven and seven tenths | no. labels flipped | 15 |
| N | Bottom line | $12-2=10$ |       <br>       <br> $2 / 4$      <br>     $\mid$  <br>       | yes. scale factor of (x6) | no - \# of shirts varies from each closet |
| O | Top line | 5 wild things | 0.7 | 60 students: 1 bus | yes -2 wheels on each bicycle |
| P | 11 | 4 | Between 0.25 and 0.5 | 30 notes hit | no - no scale factor |
| Q | 8 | 4 and 6 are compatible | Line closest to 1 | $\frac{17}{12}$ or $1 \frac{5}{12}$ | $\begin{gathered} \hline \text { yes - scale factor } \\ (\mathrm{x} 20) \end{gathered}$ |
| R | $\begin{gathered} 13 \text { beans } \\ 13 \end{gathered}$ | $\begin{aligned} & 8+5=13 \\ & 5+8=13 \\ & 13-8=5 \\ & 13-5=8 \end{aligned}$ | Line in the middle | $4 \frac{1}{8}$ | yes - scale factor (x10) |




Units 4 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class
Print on goldenrod paper.
Family Fun - Problem Cards (1 of 2)


Units 4 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class

## Print on goldenrod paper.

Family Fun - Problem Cards (1 of 2)


Units 4 Lesson 3 - FAMILY FUN

One per student for home
One per partner pair in class
Print on goldenrod paper.
Family Fun - Problem Cards (2 of 2)

| J. What is |  |  |  |  | K. <br> What is the |  |  |  |  | L. <br> What is the fifth term? |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
| 3 | 6 | 9 |  |  | 5 | 10 | 15 |  |  | 5 | 10 | 15 |  |  |
| M. |  |  |  |  | N. <br> Is this a proportional relationship? <br> Number of shirts in closets |  |  |  |  | O. <br> Is this a proportional relationship? <br> Number of tires to bicycles |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 |  |  |  |  |  |  |  |  |  |  |
| 3 | 6 | 9 |  |  |  |  |  |  |  |  |  |  |  |  |
| P. <br> Is this a proportional relationship? <br> Lap 1, 15 min . Lap 2, 25 min . Lap 3, 20 min . Lap 4, 30 min |  |  |  |  | Q. <br> Is this a proportional relationship? <br> Lap 1, 20 min . Lap 2, 40 min . <br> Lap 3, 60 min . Lap 4, 80 min |  |  |  |  | R. <br> pro <br> Lap <br> Lap | $10$ $30$ |  |  | ip? <br> min. <br> min |

Units 4 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class

## Print on goldenrod paper.

Family Fun - Problem Cards (2 of 2)

| J. ¿Cuál es el factor de escala? |  |  |  |  | K. ¿Cuál es el factor de escala? |  |  |  |  | L. ¿Cuál es el quinto término? |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
| 3 | 6 | 9 |  |  | 5 | 10 | 15 |  |  | 5 | 10 | 15 |  |  |
| M. ¿Cuál es el quinto término? |  |  |  |  | N. <br> ¿Es ésta una relación proporcional? <br> Número de camisas en armarios. |  |  |  |  | 0. <br> ¿Es ésta una relación proporcional? <br> Número de llantas a bicicletas. |  |  |  |  |
| 1 | 2 | 3 | 4 | 5 |  |  |  |  |  |  |  |  |  |  |
| 3 | 6 | 9 |  |  |  |  |  |  |  |  |  |  |  |  |
| P <br> ¿Es ésta una relación proporcional? <br> Lap 1, 15 min. Lap 2, 25 min . Lap 3, 20 min . Lap 4, 30 min |  |  |  |  | Q <br> ¿Es ésta una relación proporcional? <br> Lap 1, 20 min. Lap 2, 40 min . Lap 3, 60 min . Lap 4, 80 min |  |  |  |  | R ¿Es ésta una relación proporcional? |  |  |  |  |
|  |  |  |  |  | Lap 1, 10 min . Lap 2, 20 min . Lap 3, 30 min . Lap 4, 40 min |  |  |  |  |  |

## Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions

## Materials:

- Family Fun Generic Game Board
- Family Fun Movement Cards
- Unit 4 Family Fun Problem Cards for grades 7-8 (green)
- Family Fun Answer Key for Unit 4 (all grade bands)
- Unit 4 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions


## Solution Expectations

## Problems A - I

This card set focuses on scale factor, similar figures, and proportionality. Students should compare corresponding sides of the figures, determine the scale factor, and solve for the missing measurement.

## Problems J - R

This card set focuses on scale factor and proportionality without the use of shapes. Solution strategies are essentially the same as Problems A-I. Students should compare ratios, determine if a scale factor is present, and then proceed to answer the question.

## Unit 4 Lesson 3 - FAMILY FUN

## Instrucciones especiales para 7-8 Grados

## Materiales:

- Tablero de juego
- Tarjetas de movimiento
- Tarjetas de problemas (para los grados 7-8)
- Clave de respuestas para Unidad 4 (todos los grados)
- Instrucciones especiales


## Expectativas de solución

## Problemas A-I

Este juego de cartas se centra en el factor de escala, las figuras similares y la proporcionalidad. Los estudiantes deben comparar los lados correspondientes de las figuras, determinar el factor de escala y resolver la medida faltante.

Problemas J - R
Este juego de cartas se centra el factor de escala y la proporcionalidad sin el uso de las formas. Las estrategias de solución son esencialmente las mismas que las de los Problemas A-I. Los estudiantes deben comparar relaciones, determinar si un factor de escala está presente y, luego, proceder a responder la pregunta.

Math Matters 2014 - In-Home Instruction

## Math Objectives <br> Math Lesson 1

- Compare measurements of squares.
- Work with others to find scale factors for similar squares.


## Math Lesson 2

- Compare measurements of rectangles.
- Work with others to find scale factors and similar rectangles.


## Differentiate

Math Lesson 1 - students explore similarity of figures through working with squares.

Math Lesson 2 - students use rectangles to find scale factor.

## Materials <br> Math Lesson 1

- 36 color tiles per student
- customary ruler (inches)


## Math Lesson 2

- BLM Similar Rectangle Cut-outs
- BLM Similar Rectangles Record Sheet
- BLM Similar Rectangles Record SheetTeacher Guide
- scissors
- customary ruler (inches)


## Family Fun

- Family Fun Generic Game Board
- Family Fun Movement cards
- Unit 4 Family Fun-Problem Cards
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 4 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions
- game markers

Snack Fractions (Math Lesson 1)

- 2 skewers
- 1 -in cubes cooked meat (16)
- 8 cubes pineapple
- 8 cheese cubes
- 8 cherry tomatoes
- 2 paper dessert plates
- 2 paper towels

All items listed above per partner pair

- BLM Kabob-Snack Fractions


## QUESTIONING

As a result of this lesson, your students should be able to respond to the following:

- How do you know these two rectangles are similar?
- What is the SCALE FACTOR used to determine the dimensions of the larger rectangle?
- Suppose you had started with the larger rectangle - what scale factor would you have used to create the smaller rectangle?
- You have not included these two rectangles as a similar pair. How do you know they are NOT similar
- Explain your strategy for solving the problem.
- What is the SCALE FACTOR used to determine the new dimensions?
- What is this question asking you to do?


## Math Vocabulary

scale factor, similarity, proportions, similar, ratio

## CGI Problem

- Price, measurement
- Price, partitive


## Journal Writing

Explain how you know whether you are reducing or enlarging a figure by looking at the scale factor.

## Family Fun

A generic game board is being used in all grade levels, differentiated by game cards specific to the grade level. Students use problem cards with discount and tip word problems.

## Snack Fractions

Students divide their snack in half and calculate various percentages based on their portion.

## Assessment

Students will be introduced to and practice skills for items 1, 2, 3, 4, 5, 6, 7, 8, 9 .
Grades 7-8

Aeroscraft Article "Frankenstein of the Skies"
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit 5 Lesson 1 Daily Routine $30-45 \text { minutes }$ | Solve word problems using a variety of strategies and defend their strategies. Model and solve 3-step word problems. Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 10 <br> - Graphing <br> - Money Matters | - trundle wheel <br> - primary timers <br> - distance markers | - BLM Aeroscraft Investigation (1of3)Measurement Lab Record Sheet <br> - BLM Solve It! Problems 1-2 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 1-3 CGI Aerospace Articles |
| Classroom <br> Lesson 1 <br> 30 min. - 1 hour | Use ratios to determine rates of travel. | Compare and contrast information in a science featured article. Explain vocabulary words to the class using definitions, sentences, examples, and pictures. <br> Discuss problem solving strategies. | Vocabulary <br> Find what is common to a group of pictures. <br> Literature <br> Speculate on a mystery picture, and then read article \#1, "Frankenstein of the Skies." <br> Transition to Math Students use ratios to find rate of speed. |  | - BLM Mystery Picture <br> - BLM Vocabulary Pictures for each word <br> - BLM Comparison Chart <br> - Article "Frankenstein of the Skies" |


| Math <br> Lesson 1 <br> 30 minutes | Use ratios to determine rates of travel, distances traveled, and time traveled. | Discuss problem solving strategies with peers. Write out solutions for solving problems. <br> Discuss how to set up ratios to show proportional relationships. <br> Explain how to set up a ratio. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Revisit setting up ratios and solving for $x$. |  | - BLM Aero-Travel |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up <br> Lesson 1 <br> 30 min. -1 hour (including Snack Fractions) | Use ratios to determine rates of travel, distances traveled, and time traveled. | Discuss problem solving strategies with peers. Write out solutions for solving the model problem. <br> Explain how to set up a proportional ratio. Write an explanation of how ratios help you think about relationships. | Students solve ratio problems involving their own towns. <br> Writing Prompt How do ratios help you think about relationships? |  | - BLM Your Aero-Travel Trip <br> - BLM Recursive Review Problems (found in Lesson 1) |
| Snack Fractions Lesson 1 | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems. | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing Laughing Cow Cheese wedges. | - 3 Laughing Cow Cheese wedges <br> - 1 plastic knives <br> - 2 paper dessert plates <br> - 2 paper towels All items listed above per partner pair | - BLM Laughing Cow Cheese-Snack Fractions |

Grades $7-8$

## Unit 5, Lesson 2

 This is a quick snapshot of ea lesson plans for each lesson.| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit 5 Lesson 2 Daily Routine $30-45$ minutes | Solve word problems using a variety of strategies and defend their strategies. Model and solve 3-step word problems. Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 30 <br> - Graphing <br> - Money Matters | - trundle wheel <br> - primary timers <br> - distance markers | - BLM Aeroscraft Investigation (2of3)Measurement Lab Record Sheet <br> - BLM Solve It! Problems 3-4 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 1-3 CGI Aerospace Articles |
| Classroom <br> Lesson 2 <br> $30 \mathrm{~min} .-1$ hour | Use ratios to determine rates of travel. | Compare and contrast information from a second science feature article. Explain vocabulary words to the class using definitions, sentences, examples, and pictures. <br> Discuss problem solving strategies. | Vocabulary <br> Practice vocabulary through a game called "You're the Teacher." <br> Literature <br> Read article \#2 "The Flying Luxury Hotel" and build a Comparison chart based on the information. <br> Transition to Math Discuss Follow-up activity from Lesson 1. |  | - BLM Vocabulary Pictures for each word <br> - BLM Comparison Chart <br> - Article "The Flying Luxury Hotel" |


| Math <br> Lesson 2 <br> 30 minutes | Use any strategy to solve percent problems including percent discounts, interest and tips. | Discuss problem solving strategies with peers. Write out solutions for solving problems. <br> Discuss how to set up percent discount problems. Explain how to solve tip and interest problems. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Revisit solving discount, interest and tip percent problems. |  | - paper and pencil |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up <br> Lesson 2 <br> 30 min. -1 hour (including Snack Fractions) | Use any strategy to solve percent problems including percent discounts, interest and tips. | Discuss problem solving strategies with peers. Write out solutions for solving problems. <br> Discuss how to set up percent discount problems. <br> Explain how to solve tip and interest problems. <br> Write out an explanation of how to find the amount of money earned for a certain percent of interest. | Continue the lesson, modeling another problem before circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt Explain how to find the amount of money earned for a certain percent of interest. |  | - BLM Luxury Hotel in the Sky <br> - BLM Recursive Review Problems (found in Lesson 1) |
| Snack Fractions Lesson 2 | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems. | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing Crackers and Nutella. | - 2 paper dessert plates <br> - 2 paper towels <br> - 1 plastic knife <br> - 4 graham crackers <br> - 2T Nutella <br> All items above per partner pair | - BLM Crackers and Nutella-Snack Fractions |

Grades 7-8
Overview
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Manipulatives | Supplies |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Unit 5, Lesson 3 Daily Routine 30-45 minutes | Solve word problems using a variety of strategies and defend their strategies. Model and solve 3-step word problems. Compose and decompose values to show a new representation of the value. Find equivalent fractions. | Speak to partners, teacher, and class using vocabulary. <br> Discuss problem solving process and strategies. Explain how they decided to rename the target number. | Essential: <br> - Measurement Lab <br> - Solve It! Problems <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> - Target Number 60 <br> - Graphing <br> - Money Matters | - trundle wheel <br> - primary timers <br> - distance markers | - BLM Aeroscraft Investigation (3of3)Measurement Lab Record Sheet <br> - BLM Solve It! Problem 5 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 1-3 CGI Aerospace Articles |
| Classroom <br> Lesson 3 <br> 30 min. -1 hour | Compare problem solving strategies with peers. | Summarize learning about the Aeroscraft. <br> Paraphrase key details from a science feature article. <br> Review vocabulary words from the summer by playing a game. <br> Discuss how the Aeroscraft will work. <br> Discuss problem solving strategies. <br> Explain problem solving strategies to peers. | Vocabulary <br> Play Vocabulary Bingo <br> Literature <br> Read article "How the Aeroscraft Works" and discuss different topics based on the information. <br> Transition to Math Discuss Follow-up activity from Lesson 2. |  | - Vocabulary BINGO instructions <br> - Vocabulary BINGO card <br> - Activity 9 on website: http://www.teachnet.co m/lesson/langarts/wordw all062599.html <br> - Article "How the Aeroscraft Works" |


| Math <br> Lesson 3 <br> 30 minutes | Solve similarity problems using scale factors and proportional ratios. Draw models to represent similar objects. | Discuss problem solving strategies with peers. Write out solutions for solving problems. <br> Discuss how to set up ratios to find scale factors. Explain what a scale factor means. | Vocabulary Use vocabulary pervasively in the lesson, including literature vocabulary (see suggestions in side bar of lesson). <br> Mathematics <br> Sketch a scale picture and find the scale factor using proportions and estimation. | - 4-function calculator | - Article "How the Aeroscraft Works" <br> - BLM Aeroscraft Scale Model |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up <br> Lesson 3 <br> 30 min. - 1 hour (including Snack Fractions) | Solve similarity problems using scale factors and proportional ratios. Draw models to represent similar objects. | Discuss problem solving strategies with peers. <br> Write out solutions for solving problems. <br> Discuss how to set up ratios to find scale factors. <br> Explain what a scale factor means. <br> Write an explanation of how proportions can help you find scale factors. | Continue the lesson, modeling another problem before circulating the room to assure students understand the problems and how to set up ratios. <br> Writing Prompt How can proportions help you find scale factor? | - dominoes (1 set per pair) | - BLM King of the Mountain-Game Instructions <br> - King of the Mountain Game Board <br> - game markers <br> - graph paper <br> - scratch paper |
| Snack Fractions Lesson 3 | Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals. <br> Convert between fractions, decimals, whole numbers and percents. <br> Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios). Estimate and find solutions to application problems involving percent. | Discuss how ratios and proportions can be used to solve real-world problems | Students will work in pairs and explore fraction, decimal, and percent concepts through fairsharing Bagels and Cream Cheese. | - 1 large bagel <br> - 4T cream cheese <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 2 plastic knives All items above per partner pair | - BLM Bagels and Cream Cheese-Snack Fractions |

## Project SMART/Math MATTERS 2014

| Grade Level: 7-8 | Unit 5/Lessons 1-2-3 |
| :---: | :---: |

## Daily Routine Math Objectives:

Observe and use patterns based on the online activity to solve problems.
Model and solve situational problems with fractions, decimals and percents using pictures, numbers and words.
Use scale factors to find the dimensions of similar rectangles.
Measure and record walking distances.
Measure out lengths corresponding to aircrafts.
Calculate ratios according to measured lengths.
Use measurements to calculate rates of speed.
Calculate percent differences in aircrafts, according to measured lengths.
Solve multi-step word problems.
Find missing addends.

## Daily Routine Language Objectives:

Listen, read, speak, and write the problem.
Listen to, read, speak and write about measurement vocabulary.
Speak to partners, teacher, and class using vocabulary introduced in the Daily Routines.

## Unit Math Objectives:

Use ratios to determine rates of travel, distances traveled, and time traveled.
Use any strategy to solve percent problems, including percent discounts, interest and tips.
Compare problem solving strategies with peers.
Solve similarity problems using scale factors and proportional ratios.
Draw models to represent similar objects.

## Unit Language Objectives:

Discuss specific objects and their relationships.
Discuss and list strategies for learning new vocabulary words.
Read and speak sentences containing vocabulary words.
Read, write and speak self-created sentences containing vocabulary words.
Discuss a mystery object and how it might be used and what it might be like.
Discuss problem solving strategies with peers.
Listen to, read and discuss "Frankenstein of the Skies," "The Flying Luxury Hotel of Tomorrow," and "How the Aeroscraft Will Work."
Write out solutions for solving problems.
Discuss how to set up ratios to show proportional relationships and to find scale factors.
Explain how to set up ratios.
Write an explanation of how ratios help you think about relationships.
Discuss the Aeroscraft and how it will work.
Discuss how to set up percent discount problems.
Explain how to solve tip and interest problems.
Write out an explanation of how to find the amount of money earned for a certain percent of interest.
Explain what a scale factor means.
Write an explanation of how proportions can help you find scale factors.

## Technology Objectives:

Use research skills and electronic communication, with appropriate supervision, to create new knowledge.

```
Vocabulary
```

Math:
Language:
scale factor, similarity, similar, proportion, percent, ratio, interest, tax inhabit, vehicle, conventional, luxury, environment, configured, amenities, vertical

## Resources/Literacy Links

(Articles about the Aeroscraft)
Frankenstein of the Skies http://abcnews.go.com/Technology/story?id=1644771\&page=1
How the Aeroscraft Works http://abenews.go.com/Technology/story?id=1644771\&page=1
The Flying Luxury Hotel of Tomorrow
http://www.popsci.com/popsci/whatsnew/18ac893302839010vgnvcm1000004eecbccdrcrd.html

## Lesson Sequence

- Daily Routine: 30-45 minutes
- Classroom Lesson: 30 minutes - 1 hour
- Math Lesson: 30 minutes
- Classroom Follow-up including Independent Writing: 30 minutes -1 hour


## Enrichment Activities - These are BEYOND EXPECTATION

## Math Extensions:

Fraction/Decimal/Percent Games:
http://www.bbc.co.uk/skillswise/numbers/fractiondecimalpercentage/comparing/comparingall3/index.shtml http://www.quia.com/jg/65724.html
Multiplication Puzzler (Early Egyptian Multiplication):
http://freakonomics.blogs.nytimes.com/2007/09/05/a-little-math-puzzle-to-ponder/

## Strand Extensions:

Social Studies: Read articles on the Aeroscraft to determine jobs and interaction on the ship.
Science: Unit on buoyancy developed by Berkeley University for middle school students regarding the Aeroscraft.
http://www.coe.berkeley.edu/cues/pep/adept/Particle_Party_Balloons_all.pdf
Art: Design a new form of ground transportation
Writing Workshop: Plan a route from LA to NYC that would be an interesting "tour" trip of natural and man-made sites to see from the low and slow flying Aeroscraft.

## Technology:

Materials

- BLM Aeroscraft Investigation (1of 3)-Measurement Lab
Record Sheet
- BLM Solve It! Problems 1-2
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 1-3 CGI Aerospace Articles

Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 2-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.

Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.


## Math Vocabulary

scale factor
similarity
similar
proportion
percent
ratio
interest
tax
Literature Vocabulary
inhabit
vehicle
conventional
luxury
environment
configured
amenities
vertical

## Unit 5, Lesson 1 <br> Grades 7-8 <br> Daily Routine <br> 

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - Aeroscraft Investigation (1 of 3)
- Lesson 2 - Aeroscraft Investigation (2 of 3)
- Lesson 3 - Aeroscraft Investigation (3 of 3)


## Lesson 1 Materials

- trundle wheel
- primary timers
- distance markers


## Lesson 1 Student Groups

1) Using the trundle wheel outside, measure a distance that would be equal to the length of 2 football fields plus end zones. (about 720 ft. or 240 yds.)
2) Mark and label it as Distance \#1. (Must last for entire unit.)
3) Group members will time each other walking Distance \#1 from start to finish.
4) Calculate rate of speed for each student.

Solve It! Multi-step problem solving

- Lesson 1 - pairs, related 3-step problems
- Lesson 2 - pairs, 3-step problem
- Lesson 3 - pairs, 3-step problem


## Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot


## $X$ Marks the Spot

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot


## CGI

- Lesson 1 - rate, measurement division
- Lesson 2 - rate, multiplication (assessment item 7)
- Lesson 3 - price, partitive (assessment item 6)

| Assessment Items <br> Students are introduced to and practice the skills necessary for success on the following assessment items: 1, 2, 6, 7, 8, 9 | Unit 5, Lesson 1 Grades 7-8 <br> Daily Routine - continued 6) |
| :---: | :---: |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
|  | OPTIONAL |
|  | Target Number <br> - Lesson 1 - Target Number 10 <br> - Lesson 2 - Target Number 30 <br> - Lesson 3 - Target Number 60 |
| TEKS for this Unit <br> $7^{\text {th }}-7.1 \mathrm{~A}, 7 . \mathrm{ABD}, 7.3 \mathrm{AB}$ <br> $8^{\text {lin }}-8.1 \mathrm{AB}, 8.2 \mathrm{AB}, 8.3$ | Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

## Unit 5 Lesson 1 - Daily Routines - Measurement Lab

One per student

## Aeroscraft Investigation (1 of 3) - Measurement Lab Record Sheet

Students should work in small groups.

## Materials:

- trundle wheel
- primary timers
- distance markers


## Task:

1) Using the trundle wheel outside, measure a distance that would be equal to the length of 2 football fields plus end zones (about 720 ft . or 240 yds .).
2) Mark and label it as Distance \#1. (Marker must last for entire unit.)
3) Time each other FAST-walking Distance \#1 from start to finish.
partner \#1 $\qquad$
partner \#2 $\qquad$
partner \#3 $\qquad$
4) Calculate the rate of speed for each student (yards per minute).
partner \#1 $\qquad$ yards per minute
partner \#2 $\qquad$ yards per minute
partner \#3 $\qquad$ yards per minute
5) BONUS - Using the information you found in this activity, calculate the approximate rate of speed in (miles per hour) for each member of the group.

## Unit 5 Lesson 1 - Daily Routines - Solve It! Problems (Pairs)

One per student

## Partner \#1 - Problem 1:

Blia and Nu decided to open a dog walking business after school. In deciding how to charge, they thought about how much time they could invest after homework and chores. Each felt they could handle two 25 -minute walks five times a week. They looked up dog walking and found that the National average charge is $\$ 16$ a walk. They wanted to put $10 \%$ of what they earned in a savings account to use for business costs. Based on the number of walks they do, how much money will the girls get to take home at the end of the week after their deductions for business costs and savings?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

One per student

## Partner \#2 - Problem 2:

Blia and Nu realized, after the first day of running their dog walking business, that more supplies would be needed to ensure the animals were in a safe and clean environment. Each had two walks that day that earned them $\$ 32$ apiece. Blia even earned a tip of $\$ 5$. At the pet store they found a sturdy leash for $\$ 12.95$, and another that was regularly priced $\$ 21.95$ on sale for $25 \%$ off. They needed plastic bags to clean up after the dogs. They each bought a dispenser with 30 refill bags for $\$ 6.05$. The girls thought it would be easier to combine their earnings for the day, pay for the new supplies, and then split the remaining balance between them equally. What was their profit at the end of the day?

| Problem Solution | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

## Unit 5 Lesson 1 - Daily Routines - Fraction Action and $X$ Marks the Spot

One per student

## Fraction Action

## Materials:

None for this activity

## Task:

Emilio bought a picture frame that measured $8 " \times 12 "$. He bought a similar frame, but smaller by one-third of those dimensions. What are the measurements of the new frame?

## $X$ Marks the Spot

Write and equation and solve for $x$.
A rectangle has a perimeter of 36 inches. The length is twice the width. What is the width $(x)$ of the rectangle?

Unit 5 Lesson 1-3 - Daily Routines - CGI Problems
One per student
CGI - Aeroscraft Articles

|  | Multiplication | Measurement Division | Partitive <br> Division |
| :---: | :---: | :---: | :---: |
| Grouping/ Partitioning | The chef spent $\$ 36$ per serving for a luxurious meal on the Aeroscraft's first trip. If he prepared for 250 people, what did he spend on the food? | The chef spent a total of $\$ 6,750$ for one luxurious meal. If he spent $\$ 27$ per serving, how many servings did he purchase? | The chef spent a total of $\$ 9750$ for 250 servings for one luxurious meal on the Aeroscraft. How much did each serving cost? |
| Rate | At a cruising speed of 174 mph , how far will the Aeroscraft be able to cruise in 12 hours? | The Aeroscraft will be able to cruise at a speed of 174 mph . At that rate, how long will it take the ship to cruise 1044 miles? | If the Aeroscraft traveled 1176 miles in 7 hours, what would the average mile per hour rate of speed be? |
| Price | Visiting the Spa might be one of the luxurious amenities on the Aeroscraft. If one visit costs $\$ 125$, what would 4 visits cost? | A trip to the Spa, one of the luxurious amenities on the Aeroscraft, costs $\$ 135$. If the total income for a trip of 18 hours was $\$ 3510$, how many spa visits were made during that time period? | The Spa is an optional amenity onboard the Aeroscraft. If in 18 hours $\$ 3125$ was collected for 25 visits, what is the cost of each visit? |

Unit 5 CGI Problems for "Articles on Aeroscraft"


|  | Multiplicación | Medición División | División Partitiva |
| :---: | :---: | :---: | :---: |
| 为 | El chef gastó \$36 por platillo para una comida lujosa en el primer viaje del Aeroscraft. Si preparó para 250 personas, ¿Cuánto gastó en comida? | El chef gastó un total de \$6,750 para una comida lujosa. Si gastó $\$ 27$ por plato, ¿Cuántos platillos compró? | El chef gastó un total de $\$ 9750$ por 250 platillos de una comida lujosa en el Aeroscraft. ¿Cuánto costó cada platillo? |
|  | A una velocidad de crucero de 174 mph , ¿Cuánta distancia podrá recorrer el Aeroscraft en 12 horas? | El Aeroscraft podrá llegar a una velocidad de 174 mph. A ese ritmo, ¿Cuánto le tomará a la nave recorrer 1044 millas? | Si el Aeroscraft viajó 1176 millas en 7 horas, ¿Cuál sería el ritmo promedio de velocidad en millas por hora? |
|  | Visitar el Spa puede ser una de las lujosas amenidades del Aeroscraft. Si una visita cuesta \$125, ¿Cuánto costarían 4 visitas? | Un viaje al Spa, una de las amenidades de lujo del Aeroscraft, cuesta $\$ 135$. Si el ingreso total para un viaje de 18 horas fue de $\$ 3510$, ¿Cuántas visitas al Spa se hicieron durante ese periodo de tiempo? | El Spa es una amenidad opcional a bordo del Aeroscraft. Si en 18 horas se recolectaron $\$ 3125$ por 25 visitas, ¿Cuál es el costo de cada visita? |

Materials

- BLM Mystery Picture
- BLM Vocabulary Pictures for each word
- BLM Comparison Chart
- BLM Pictures of things that fly
- Sticky notes
- CLASSROOM set of article for the lesson.


## Literature Selection

Article - "Frankenstein of the Skies"
http://abcnews.go.com/Tech
nology/story? id=1644771\& page $=1$

Please note: This article is not included in the handouts. You must download and print a copy for classroom use. (Lessons 1 and 2)

Lessons 2: "The Flying Luxury Hotel of Tomorrow" http://www.cnn.com/20 06/TECH/02/16/aeroscr aft/

Please note: This article is not included in the handouts. You must download and print a copy for classroom use.

Ship was officially launched http://www.gizmag.com/go/ 8132/

Lesson 3:
http://science.howstuff works.com/transport/flight/f uture/aeroscraft.htm

Note: This article must be downloaded from the Internet.

Math Vocabulary<br>scale factor<br>similarity<br>similar<br>proportion<br>percent<br>ratio

## Unit 5, Lesson 1

Grades 7-8
Classroom Lesson


Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Use ratios to determine rates of travel.


## Reading Objective:

- Compare and contrast information in a science feature article.


## Language Objectives:

- Discuss the relationship between objects, including a mystery object.
- Understand the meaning of vocabulary words and how they are used in a science feature article.
- Discuss problem solving strategies.


## BEFORE READING

## Building Background - Literature \& Vocabulary

Explain: I'm going to show you some pictures. For each one, tell me what it is. Once you've seen all of them, tell me what relationship you see among the pictures. What do they have in common?

1. Show students each picture in the following order:

- butterfly
- bird
- airplane
- helicopter
- blimp

2. Have students identify each word and put each picture up on the board.
3. Have students share what they have in common. Show the following sentence stem, and help students fill it in with their association:

- These are all things that $\qquad$
Note: You are looking for the word "fly." Later you can change it to the vocabulary word "inhabit."

4. Tell students you want to show them another thing that flies. Show students the BLM Mystery Picture. Ask, "What do you think this is?" Students can first talk with their partners, then with the class.
environment
configured amenities vertical

## Unit 5, Lesson 1 <br> Classroom Lesson - continued

5. Explain: For the past few years a group of scientists have been creating what you see in this picture - they're calling it an "Aeroscraft." Write this for students to see. It would be a new way to fly through the sky. The Aeroscraft is not ready to be used just yet, but soon you might be seeing it up in the air.

Explain: Today we're going to read a feature article from the ABC News website to learn what the Aeroscraft is. The title of the article is "Frankenstein of the Skies." (Show students the title so they can all see it.)
6. Ask, "What does the title tell you about the Aeroscraft?" Have students share their ideas first with a partner, and then with the whole class.
7. Have students talk about the Aeroscraft, using the following questions as a guide:

- Would you like to travel in something like this? What would it be like?
- What would you see?
- What would you do on board?
- Where would you travel?


## Comprehensible Input - Vocabulary

Explain: Before we read this feature article about the Aeroscraft - the "Frankenstein of the Skies" - I want to help you understand some of the vocabulary that's in the article.

## Practice and Application - Vocabulary

For each word:

1. Show students the BLM Vocabulary Pictures for the word, and read the accompanying sentence together.
2. Use the below suggestions to help explain the meaning of the word to students.
3. Then, use the below suggestions to explain how the word connects to the feature article "The Frankenstein of the Skies." This meaningful context is essential for students to understand how the word relates to what they will be reading.

Inhabit - (to live in, but also to occupy)

- Explanation: For each picture, tell students something living and something inanimate that could inhabit it (Example: People inhabit tall buildings. Furniture inhabits tall buildings.).
- Connection to the Article: In this article you will learn how the Aeroscraft could inhabit the skies, just like airplanes, birds, butterflies, and helicopters.


## Guided Reading

 Groups and Independent Reading Connection If you conduct guided reading groups as part of your balanced literacy instruction, or provide time for independent reading, you can reinforce these same reading strategies.
## After students have

 read the text on their own, to improve their comprehension of the more difficult parts:- Comparing and Contrasting: Informational Text
- What did you learn in this part?
- How is it similar to/different from $\qquad$ ?


## Narrative Text

- How are these characters similar? Different?
- How is the setting similar to/different from
$\qquad$ ?
- How is the problem similar to/different from ?
- Does this remind you of something similar in another text?


## Unit 5, Lesson 1 <br> Classroom Lesson - continued

## Grades 7-8 <br> \%

Vehicle - (means of transportation, usually motorized)

- Connection to the Article: The Aeroscraft will be a new type of vehicle that people can use to go from one place to another.

Conventional - (the usual, or expected)

- Explanation: For each picture begin the sentence, "This is the conventional way that we . . ." until you get to the last picture of the boy soaring through the air on his bicycle. Then say, "Oops, this is NOT conventional."
- Connection to the Article: The Aeroscraft is not a conventional airplane - you will learn how it's different.
Luxury - (lavish comfort, extravagance)
- Connection to the Article: The article says that the Aeroscraft is designed for the "luxury traveler." What do you think that means?


## Environment - (surroundings)

- Connection to the Article: The article says that in the Aeroscraft you can work in a "normal environment." What do you think that means?


## Configured - (planned arrangement of things)

- Connection to the Article: The Aeroscraft can be configured like a cruise ship. How is the space used on a cruise ship?


## Amenities - (services)

- Connection to the Article: As we read, listen for what amenities the Aeroscraft could have.

Vertical - (straight up and down, perpendicular)

- Connection to the Article: The Aeroscraft would have a vertical takeoff and landing - just like a helicopter!


## DURING READING

Comprehensible Input -Literature: Article \#1
Give each student a copy of the article, so they can follow along with the text as you read. This visual support will be helpful for students, since this feature article is complex. Leave the mystery picture as the focal point as you read aloud the article.

## Throughout the Reading: Comparing and Contrasting

The reading strategy you will be modeling and practicing with students during this reading is Comparing and Contrasting to help them understand how the Aeroscraft is similar to and different from a conventional airplane.

|  | Unit 5, Lesson 1 <br> Grades 7-8 <br> Classroom Lesson - continued |
| :---: | :---: |
| Listening Center: Independent Reading <br> Have students listen to "The Frankenstein of the Skies" in a Listening Center as part of their independent reading time. <br> Beginning ELLs: Benefit from listening to a text repeatedly to connect oral and written language. <br> Intermediate \& Advanced ELLs: Benefit from listening to a text repeatedly to develop fluency, and reading along softly when possible. | As you read, pause after different paragraphs to either model with a think aloud, or ask students a question: <br> - Example Teacher Think Aloud: So in this part it's saying that the Aeroscraft $\qquad$ . That's (similar to/different from) a conventional airplane, which $\qquad$ <br> - Example Teacher Questions: <br> - What did we learn in this part about the Aeroscraft vehicle? <br> - How is that different from a conventional airplane? <br> - How is that similar to a conventional airplane? <br> As students compare and contrast, add the key details to a Venn Diagram: <br> Aeroscraft Conventional Airplane <br> AFTER READING <br> Practice and Application - Literature \& Vocabulary T-Chart <br> 1. Give each student a copy of the BLM Chart. <br> 2. Have students work with a partner to discuss each part of the chart, and fill in the details from the article. They should refer to their copies of the article to look for the details they want to include in each part of the Chart. <br> 3. Circulate as students are working, and help them refer to the article. <br> ELLs: You can use this time to meet with a small group of ELLs to help them pull out the key details from the text. |



## inhabit

Animals and other things can inhabit these places Los animales y otras cosas pueden habitar estos lugares.


## vehicle

It is easier to see far-away places when you travel in a vehicle.
Es más facil ver lugares lejanos cuando viajas en un vehículo.


## conventional

These are all conventional ways of doing things.
Estas son formas convencionales de hacer las cosas.


Unit 5 - Classroom Lesson - Vocabulary

## 6

## luxury

All of these show a level of luxury.
Todas estas fotografias muestan un nivel de lujo.



Unit 5 - Classroom Lesson - Vocabulary

## environment

In which environment do you live?
¿En qué ambiente vives?

configured
Each of the groups has the same content, but they are configured differently. Cada una de las formas tiene la misma área, pero está configurada de manera diferente.


## amenities

The resort offered many amenities to its guests. El resort ofrecía muchas comodidades a los huéspedes.



## vertical

The pictures show vertical relationships or movement.
Las imágenes muestran relaciones o movimiento vertical.



Unit 5 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.
inhabit
vehicle

## conventional

## luxury

Unit 5 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

# environment 

## configured

## amenities

## vertical

Unit 5 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.


## vehículo

## convencional

lujo

Unit 5 - Classroom Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## ambiente

## configurado

# comodidades 

## vertical

Unit 5 Lesson 1 - Classroom Lesson
One per group
Comparison Chart
Work with your teacher and peers to complete the chart.

|  | Configured as a <br> Cruise Ship | Configured as a <br> Cargo/Military <br> Ship |
| :---: | :---: | :---: |
| Purpose |  |  |
| Amenities |  |  |
|  |  |  |


| Materials <br> - BLM Aero-Travel | Unit 5, Lesson 1 Grades 7-8 <br> Math Lesson 6.95 |
| :---: | :---: |
| Math Vocabulary <br> scale factor similarity similar proportion percent ratio interest tax | Math Objectives: <br> - Use ratios to determine rates of travel, distances traveled, and time traveled. <br> Language Objectives: <br> - Discuss problem solving strategies with peers. <br> - Write out solutions for solving problems. <br> - Discuss how to set up ratios to show proportional relationships. <br> - Explain how to set up a ratio. |
| Literature Vocabulary <br> inhabit <br> vehicle <br> conventional <br> luxury <br> environment <br> configured <br> amenities <br> vertical | Building Background <br> The Aeroscraft is a remarkable ship, isn't it! There is a great deal of mathematics in the articles you are going to read in class during this Unit. As you can see from the math objectives, today we'll be using the skills we have learned to solve proportionality problems as well as percent problems. |
| ELPS (English Language Proficiency Standards): 2F, 2I, 3D, 3E, 3J, 4F, 5B, 5G | Comprehensible Input <br> Use the handout students worked on in the Classroom Lesson. |
|  | The article tells us that the trip from Los Angeles to New York City will take approximately 18 hours. If the distance between the two cities is 2,451 miles, how fast does the Aerospace intend to cruise? Use ratio to find the answer. First, what are we trying to find? |
|  | Aerospace cruising speed. I know that speed can be noted in miles per one-hour (mph). I don't know the distance it travels in one-hour, but I do know I want the one-hour. What is my unknown in this problem? |
|  | My unknown is the DISTANCE traveled in one hour. That will be our variable, our $\boldsymbol{x}$. |
|  | Now, what do we know? Let's gather the data. |
|  | Distance between cities is $-2,451$ miles Time to travel that distance -18 hours |
|  | We are going to set up a ratio. It doesn't matter what relationship you have chosen as long as you set up the second ratio using the same relationship. |
|  | Here is one relationship. See how it compares with what you set up in the Classroom Lesson. |




|  | Unit 5, Lesson 1 <br> Math Lesson - continued |
| :--- | :--- |
| (Set up first the 1350 miles / $x$ hours $=70$ miles / 1 hour. Talk through <br> and solve. Then set up 1350 miles $/ 70$ miles $=x$ hours/ 1 hour. Again, <br> talk through the example in the same way and solve.) <br> It would take about 19 hours to drive the distance, and that is without <br> any breaks in the driving - that is actual driving time. |  |
| Tell students that during the Follow-up Lesson they will find out how <br> long it would take them to travel the distance between Los Angeles and <br> several different destinations. <br> MAS Space <br> Share with us the strategies used in the CGI problem. If you can, <br> upload a few of your posters showing different strategies. |  |
| Objectives |  |
| Read through the math and language objectives, making sure that |  |
| students understand how they accomplished each. |  |

Unit 5 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## scale factor

## similarity

## similar

## proportion

Unit 5 - Math Lesson - Vocabulary
Duplicate on cardstock and cut apart for word cards.

## percent

## ratio

interest

## tax

## Unit 5 Lesson 1 - Math Lesson

One per student

## Aero-Travel Problem

Work with your teacher and peers to answer the following question.
The article tells us that the trip from Los Angeles to New York City will take approximately 18 hours. If the distance between the two cities is 2,451 miles, how fast does the Aerospace intend to cruise? Use ratio to find the answer.

## Ratio Set-up \#1:

## Ratio Set-up \#2:

## Unit 5 Lesson 1 - Math Lesson

One per student

El artículo nos dice que el viaje de Los Ángeles a la Ciudad de Nueva York tomará aproximadamente 18 horas. Si la distancia entre las dos ciudades es de 2,451 millas, ¿Qué tan rápido quiere ir el Aerospace? Usa la proporción para encontrar la respuesta.

## Configuración de la razón \#1:

## Configuración de la razón \#2:

| Materials <br> - BLM Your Aero-Travel Trip <br> - BLM Recursive Review | Unit 5, Lesson 1 Grades 7-8 <br> Follow-up $6{ }^{2} 95$ |
| :---: | :---: |
| Math Vocabulary <br> scale factor <br> similarity <br> similar <br> proportion <br> percent <br> ratio <br> interest <br> tax | Math Objectives: <br> - Use ratios to determine rates of travel, distances traveled, and time traveled. <br> Language Objectives: <br> - Discuss problem solving strategies with peers. <br> - Write out solutions for solving problems. <br> - Discuss how to set up ratios to show proportional relationships. <br> - Explain how to set up a ratio. |
| Literature Vocabulary <br> inhabit <br> vehicle <br> conventional <br> luxury <br> environment <br> configured <br> amenities <br> vertical | Practice and Application <br> Distribute BLM Your Aero-Travel Trip. Students should not have any trouble in answering the questions. Make sure that students are labeling each number of their ratios. Do circulate the room, however, to ask questions to clarify and probe for deeper understanding. |
|  | QUESTIONS <br> - What do you want to find out? <br> - What do you know? <br> - Explain what each of the parts of these ratios means. <br> - Which relationship did you set up in your ratio? <br> - How do you know you have found the relationship that will give you the answer you are trying to find? <br> - What does your answer represent? |
|  | Recursive Review <br> Please use BLM to answer the Recursive Review questions. <br> - A rectangle measuring 3-inches x 5 -inches was increased in size by a scale factor of 4 . What are the dimensions of the new rectangle? |
|  | Writing Topics <br> Independent Writing Topic <br> Students will have a daily writing activity which will incorporate the day's focus math vocabulary. <br> - How do ratios help you think about relationships? |
|  | Objectives <br> Review the math and language objectives to make sure that they were accomplished and that the students realize how they were accomplished. |

## Your Aero-Travel Trip

Work with an elbow partner to answer the questions below. You may have different destinations, but the strategies remain the same. Verify each other's work.

1. How long would it take you to travel from Los Angeles to your current town?
2. How long would it take you to travel from Los Angeles to your hometown? If your current town is your hometown, pick your favorite vacation spot and use that as your travel destination.
3. How long would it take you to travel from your current town to your hometown (or favorite vacation spot)?

## Your Aero-Travel Trip

Trabaja con un compañero para contestar las preguntas a continuación. Tendrán destinaciones diferentes, pero las estrategias con las mismas. Verifica su trabajo.

1. ¿Cuanto tiempo te tomaría viajar de tu ciudad actual a Los Ángeles?
2. ¿Cuánto tiempo te tomaría viajar de tu ciudad natal a Los Ángeles. Su la ciudad donde estés este verano es tu ciudad natal, escoge otro lugar y úsalo como tu destinación.
3. ¿Cuánto tiempo te tomaría viajar entre tu ciudad actual y tu ciudad natal?

Unit 5 Lessons 1-3 - Follow-up

## Recursive Review Problems

Solve the recursive review problems using any strategy of your choice.

## Unit 5 Lesson 1

A rectangle measuring 3 -inches $x$-inches was increased in size by a scale factor of 4 . What are the dimensions of the new rectangle?

## Unit 5 Lesson 2

Elias left a $20 \%$ tip for a food bill of $\$ 8.95$. How much did he leave for the tip?

## Unit 5 Lesson 3

Susan's savings account earns 5\% interest each month. If she opened the account with \$200 on June 1, and did not deposit or withdraw any money, what was her balance at the end of July?

## Materials

- 3 Laughing Cow Cheese wedges
- 1 plastic knives
- 2 paper dessert plates
- 2 paper towels

All items listed above per partner pair

- BLM Laughing Cow CheeseSnack Fractions


## Math Objectives

- Use addition, subtraction, multiplication and division to solve problems involving fractions and decimals.
- Convert between fractions, decimals, whole numbers and percents.
- Use division to find unit rates and ratios in proportional relationships such as (speed, density, ) price, recipes, and (student-teacher ratios).
- Estimate and find solutions to application problems involving percent.


## Language Objectives

- Discuss how ratios and proportions can be used to solve real-world problems.

Math Vocabulary
scale factor
similarity
similar
proportion
percent
ratio
interest
tax

## Literature Vocabulary

inhabit
vehicle
conventional
luxury
environment
configured
amenities
vertical

## Unit 5, Lesson 1 <br> Snack Fractions



Students should wash their hands before this activity if using food items.

## Snack Fractions

Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack.

Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, extend:

## QUESTIONS

- Can you explain how to find your fourth?
- Why did you choose that strategy?

Finally, let them share the guacamole (or other dip) with a partner.
(Naturally, if you think the portions suggested in the materials list are too small for a middle schooler's snack, feel free to increase the amounts; make sure, though, that you make the amounts easily divided in halves - they've already done a great deal of work to get the snack.)

## Snack Fraction Journal Writing: BLM Laughing Cow Cheese Fractions

Explain how you know you have fair shares of the cheese wedges when sharing among four people.

Objectives: Review the objectives with the class, making sure they understand how they achieved each.

## Unit 5 Lesson 1 - Snack Fraction

## Laughing Cow Cheese Wedge - Snack Fractions

Work with your partner to solve the problems.

1. Divide the cheese wedges between you and your partner. Use pictures, numbers, and words to explain how your two shares combine to make three wholes.

2. Use the picture below to model how the cheese would have been shared between four people. What is the fractional representation of your portion now? Compare that to the half you originally received.

3. What is the percent decrease in your share from half to a fourth?

Unit 5 Lesson 1 - Family Fun 06 Dear $\qquad$ ,

We read the article "Frankenstein of the Skies" in class today.

It was about...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

One of the math concepts we used from the article was...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Sincerely,

## Materials <br> - BLM Aeroscraft Investigation (2 of 3)-Measurement Lab Record Sheet <br> - BLM Solve It! Problems 3-4 <br> - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 1-3 CGI Aerospace Articles

## Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 3-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.


## Math Vocabulary

scale factor
similarity
similar
proportion
percent
ratio
interest
$\operatorname{tax}$

## Literature Vocabulary

inhabit
vehicle
conventional
luxury
environment
configured
amenities
vertical

Unit 5, Lesson 2 Grades 7-8
Daily Routine


The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

## Measurement Lab

- Lesson 1 - Aeroscraft Investigation (1 of 3)
- Lesson 2 - Aeroscraft Investigation (2 of 3)
- Lesson 3 - Aeroscraft Investigation (3 of 3)

Lesson 2 Materials

- trundle wheel
- primary timers
- distance markers

Lesson 2 Student Groups

1) Students revisit Distance \#1.
2) From the starting point on of Distance \#1, use the trundle wheel and mark off a length of 231 feet 10 inches.
3) Label it as Boeing 747.
4) From the starting point of Distance \#1, use the trundle wheel and mark off a length of 242 feet 4 inches.
5) Label it as Boeing 777 .
6) Groups will calculate the ratio of the length of the Aeroscraft (Distance \#1) to the length of each plane.
7) Groups answer the question "How many of these planes laying end-to-end would fit inside the Aeroscraft?"

Solve It! Multi-step problem solving

- Lesson 1 - pairs, related 3-step problems
- Lesson 2 - pairs, 3-step problem
- Lesson 3 - pairs, each have a 3-step problem

Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot


## $X$ Marks the Spot

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot

|  | $\begin{array}{ll} \hline \text { Unit 5, Lesson 2 } & \text { Grades 7-8 } \\ \text { Daily Routine - continued } & \end{array}$ |
| :---: | :---: |
| Assessment Items <br> Students are introduced to and practice the skills necessary for success on the following assessment items: 1, 2, 3, 6, 9 | CGI <br> - Lesson 1 - rate, measurement division <br> - Lesson 2 - rate, multiplication (assessment item 7) <br> - Lesson 3 - price, partitive (assessment item 6 ) |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
|  | OPTIONAL <br> Target Number <br> - Lesson 1 - Target Number 10 <br> - Lesson 2 - Target Number 30 <br> - Lesson 3 - Target Number 60 |
|  | Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

Unit 5 Lesson 2 - Daily Routines - Measurement Lab
One per student

## Aeroscraft Investigation (2 of 3) - Measurement Lab Record Sheet

Students should work in small groups.

## Materials:

- trundle wheel
- primary timers
- distance markers


## Task:

1) Begin at the starting point of Distance \#1, use the trundle wheel and mark off a length of 231 feet 10 inches. Label it as Boeing 747.
2) From the starting point of Distance \#1, use the trundle wheel and mark off a length of 242 feet 4 inches. Label it as Boeing 777.
3) Calculate the ratio of the length of the Aeroscraft (Distance \#1) to the lengths of the other planes.
4) How many of these planes laying end-to-end would fit inside the Aeroscraft?

## Unit 5 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)

One per student

## Partner \#1 - Problem 3:

There was a lot more to the dog walking business than Blia and Nu had known when they first started. They were able to continue the two 25 -minute walk visits five times a week. But they found that they each could handle more than one dog at a time on several of the visits. They decided that to be fair to their customers, if more than one dog was being walked at a time, they would charge by the dog. $\$ 9$ each seemed fair. Blia had one very dominant dog on her first visit every day, so she decided he was enough to handle and charged the $\$ 16$. But her second daily visit she had three dogs. What did she make at the end of that week?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

Unit 5 Lesson 2 - Daily Routines - Solve It! Problems (Pairs)
One per student

## Partner \#2 - Problem 4:

Once Blia and Nu decided they could handle more than one dog at a time for $\$ 9$ a dog (instead of the flat $\$ 16$ a walk), Nu found several more dogs to walk on her visits. She had three on her first visit of the day and four on the second visit of the day. That meant, though, that she needed more sturdy leashes, so she bought six more leashes at $\$ 12.95$ each. What was her profit at the end of the week?

| Problem Solution <br> Name: | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

Unit 5 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

## Materials:

None for this activity

## Task:

Roberto caught 17 pounds of fish on Monday. That was $41 / 2$ times as many pounds of fish as he caught on Saturday. How many pounds of fish did Roberto catch on Saturday?

## $X$ Marks the Spot

| Solve for $x$. |
| :--- |
| $\frac{\mathbf{3}}{\mathbf{4}} \boldsymbol{x - 6}=\mathbf{6 9}$ |
|  |
|  |
|  |
|  |
|  |
|  |


| Materials <br> - BLM Vocabulary Pictures for each word <br> - BLM Comparison Chart <br> Literature Selection <br> Article - "The Flying Luxury Hotel" <br> http://www.cnn.com/2006/T <br> ECH/02/16/aeroscraft/ <br> Math Vocabulary <br> scale factor <br> similarity <br> similar <br> proportion <br> percent <br> ratio <br> interest <br> tax <br> Literature Vocabulary <br> inhabit <br> vehicle <br> conventional <br> luxury <br> environment <br> configured <br> amenities <br> vertical | Unit 5, Lesson 2 <br> Classroom Lesson <br> Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives. <br> Math Objectives: <br> - Use ratios to determine rates of travel. <br> Reading Objective: <br> - Compare and contrast information from a second science feature article. <br> Language Objectives: <br> - Explain vocabulary words to the class using definitions, sentences, examples, and pictures. <br> - Discuss problem solving strategies. <br> Practice and Application - Vocabulary <br> Vocabulary activity: "You're the teacher" <br> 1. Divide the class into eight groups, one group for each vocabulary word. <br> 2. Give the students the word card and the word picture poster for that word. <br> 3. Students' task is to become the teacher and explain this word to the class to help them understand it more fully. To do this, they need to prepare by thinking of different ways they can teach the word to the class. Explain to students that they can: <br> - Write a definition for the word <br> Have dictionaries/Internet dictionaries available for reference, and then help students put the definition into their own words so it makes sense to other students. <br> - Draw a picture to illustrate the word's meaning <br> - Write different sentences using the word <br> Students could search the word on Internet and use those examples to help them write their own sentences. <br> - Write different examples of the word <br> Students could search the word on Internet and use some of those examples. |
| :---: | :---: |

## Unit 5, Lesson 2

Grades 7-8
Classroom Lesson - continued
4. While students are working, circulate and help them create the above strategies.
5. Have each group teach their word to the class, using what they've written and drawn.

## DURING READING

## Comprehensible Input - Literature: Article \#2

Give each student a copy of the article "The Flying Luxury Hotel" so they can follow along with the text as you read. This visual support will be helpful for students, since this feature article is complex (more so than the first article).

Leave the mystery picture as the focal point as you read aloud the article: "The Flying Luxury Hotel of Tomorrow." http://www.cnn.com/2006/TECH/02/16/aeroscraft/

## Throughout the Reading: Impromptu Vocabulary Explanations

There will be words you will need to briefly stop and define for students such as "dirigible," "rigid," and "aerodynamic." Please pause just long enough to give students a feel of the word so they will better understand the article. Keep in mind that this is a complex article with many words that will be unfamiliar for students - instead of stopping to explain all of them, choose the words you think are most essential to students' understanding of the important parts of the article.

## Throughout the Reading: Comparing and Contrasting

In this lesson, you will continue to practice this reading strategy with students to help them understand how the Aeroscraft is similar to and different from a conventional airplane. Use the Venn Diagram you already have started from Lesson 1. As you read, pause after different paragraphs to ask students questions "compare and contrast" questions:

- Example Teacher Questions:
- What did we learn in this part about the Aeroscraft vehicle?
- How is that different from a conventional airplane?
- How is that similar to a conventional airplane?

As students compare and contrast, add any new details they learn in this article to the Venn Diagram from Lesson 1. Some of the information in this article is the same as the first (for example, that the Aeroscraft is about 2 football field long). When you read similar information, you can point out where it is already written in the Venn Diagram.


|  | Unit 5, Lesson 2 <br> Classroom Lesson - continued |  | Grades 7-8 |
| :---: | :---: | :---: | :---: |
|  |  | Configured as a Cruise Ship | Configured as a Cargo/Military Ship |
|  | Purpose | - A way to travel in luxury, and enjoy the trip. <br> - A way to see beautiful views of the land below. | - An easy way to transport troops AND their equipment so everything arrives together at the same time. - An easy way to ship everything a store or an oil rig needs. |
|  | Amenities | - Restaurants <br> - Nightclubs <br> - Spas <br> - Casinos <br> - Sleep cabins <br> - well-appointed state rooms <br> - one-acre sized cabin for all of these amenities - windows to look at national landmarks | - A large, open space to hold 500 tons of cargo (troops and equipment) <br> - space for a whole store's worth of merchandise <br> - space for a year's worth of supplies for an offshore oil rig - ability to land in the snow or water |
|  | Transit <br> Have st lesson activity multiple stra way?" then questions in <br> Objecti <br> Review understand | on to Math dent volunteers talk about how y from Lesson 1. Be sure th tegies. Always ask, "Did som et them present. Other students a positive manner. <br> es <br> both language and math obje ow they accomplished each. | they solved the follow-up you are encouraging eone solve this in a different s should be able to ask <br> tives, making sure students |







## Unit 5 Lesson 2 - Follow-up

One per student

## Luxury Hotel in the Sky

Students will work in small groups to complete the activity.

1. You are a passenger in the year 2020 on the Aeroscraft. A window-view stateroom ticket is $\$ 3645$. The staterooms without windows are $\$ 2256$. What is the percent of discount for the room without a window?

American Airlines:

- One way first class ticket - \$2158
* One way economy ticket - \$389

Queen Mary 2:

* carries 2620 passengers
* A 7-day cruise costs:
- ocean-view cabin - \$1099 for an
- inside cabin - $\$ 899$

One waiter can serve 20 people.
Meals are valued at an average of $\$ 45$ each.
3 full meals, requiring wait staff, are served a day.
2. You are talking with one of the waiters on the ship and find that he works 8 days on and 8 days off in every month. If his tips are very similar to those made on an ocean liner, what tip money would he make in one month?
3. If he invested the money and earned $22 \%$ on his money the first month, what was the amount of the earnings?

## Unidad 5

Lección 2 - Lección de Seguimiento - Hotel de Lujo en el Cielo
Eres un pasajero en el año 2012 en el Aeroscraft. Un camarote con ventana cuesta $\$ 3645$. Los camarotes sin ventanas cuestan $\$ 2256$. ¿Cuál es el porcentaje de descuento para los camarotes sin ventana?

Un boleto de ida de primera clase - American Airlines - $\$ 2158$
Un boleto de ida de clase económica - American Airlines - \$ 389
Queen Mary 2 lleva 2620 pasajeros
Un crucero de 7 días cuesta:

- $\$ 1099$ por una cabina con vista del mar
- $\quad \$ 899$ por una cabina sin vista

Incluye alojamiento, transporte, entretenimiento fabuloso y actividades diarias, comidas y algunas bebidas, los cargos de los puertos y más.

Un camarero puede servir a 20 personas.
Las comidas tienen un valor promedio de $\$ 45$ cada uno.
3 comidas con servicio de mesa se sirve cada día.

Estás hablando con uno de los meseros de la nave y te das cuenta de que él trabaja 8 días sí y 8 días no en cada mes. Si sus propinas son muy similares a las que ganaría en un crucero, ¿Cuánto dinero en propinas ganaría en un mes?

Si él invirtió el dinero y ganó $22 \%$ de su dinero el primer mes, ¿Cuál fue la cantidad de sus ganancias?

## Materials

- 2 paper dessert plates
- 2 paper towels
- 1 plastic knife
- 4 graham crackers
- 2T Nutella

All items above per partner pair

- BLM Crackers and NutellaSnack Fractions *Allergy Warning - Please substitute a different spread for the entire class if nut allergies are present.


## Math Objectives

- Use add, sub., mult. and div. to solve problems involving fractions and decimals.
- Convert between fractions, decimals, whole numbers and percents.
- Use division to find unit rates and ratios in proportional relationships such as (speed, density,) price, recipes, and (student-teacher ratios).
- Estimate and find solutions to application problems involving percent.
Language Objectives
- Discuss how ratios and proportions can be used to solve real-world problems.


## Math Vocabulary

scale factor similarity
similar
proportion
percent
ratio
interest
tax
Literature Vocabulary
inhabit
vehicle
conventional
luxury
environment
configured amenities vertical

## Unit 5, Lesson 2 <br> Snack Fractions <br> Grades 7-8 <br> $\overbrace{0}^{2}$

Students should wash their hands before this activity if using food items.

## Snack Fractions

Students should have the skills to answer these in small groups. Have the students work through the BLM before sharing the actual snack.

Circulate the room while students are working on the BLM, asking questions as needed to guide, redirect, extend:

## QUESTIONS

- What does this ratio mean?
- How did you determine the equivalent ratio?
- Explain how you used ratios in this activity.

Finally, let them share the trail mix with a partner.
(Naturally, if you think the portions suggested in the materials list are too small for a middle schooler's snack, feel free to increase the amounts; make sure, though, that you make the amounts easily divided in halves - they've already done a great deal of work to get the snack.)

Snack Fraction Journal Writing: BLM Crackers and Nutella Snack Fractions
Explain your strategy for finding the percent of decrease.
Objectives: Review the objectives with the class, making sure they understand how they achieved each.

Unit 5 Lesson 2 - Snack Fractions

## Crackers and Nutella - Snack Fractions

Work with your partner to solve the problems.

1. Once you have shared your Crackers and Nutella, use pictures, numbers and words to describe how your two shares combine to make $100 \%$.

2. Now, pretend that there were six of you. First, draw a picture of how the snack foods would be shared among you. Then tell what percent of the snack your portion would be. Show your work.
3. What is the percent of decrease in your share from half to one-sixth?
$\qquad$ ,

We continued reading about the Aeroscraft and how it works.

My favorite math activity related to the story today was...

because...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Sincerely,

## Materials

- BLM Aeroscraft Investigation (3 of 3)-Measurement Lab Record Sheet
- BLM Solve It! Problem 5
- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 1-3 CGI Aerospace Articles


## Math Objectives

- Solve word problems using a variety of strategies and defend their strategies.
- Model and solve 2-step word problems.
- Compose and decompose values to show a new representation of the value.
- Find equivalent fractions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.
- Explain how they decided to rename the target number.

Math Vocabulary
scale factor
similarity
similar
proportion
percent
ratio
interest
tax
Literature Vocabulary
inhabit
vehicle
conventional
luxury
environment
configured
amenities
vertical

Unit 5, Lesson 3
Daily Routine


The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab

- Lesson 1 - Aeroscraft Investigation (1 of 3)
- Lesson 2 - Aeroscraft Investigation (2 of 3)
- Lesson 3 - Aeroscraft Investigation (3 of 3)

Lesson 3 Materials

- trundle wheel
- primary timers
- distance markers

Lesson 3 Student Groups

1) Students revisit Distance \#1 (length of Aeroscraft).
2) Using the trundle wheel, groups measure and mark the width, (cabin width) of the Aeroscraft.
3) Compare the Aeroscraft cabin width to the cabin widths of the Boeing 747 (20 feet) and Boeing 777 (36 feet).
4) Groups answer the question "What is the percent of difference in the Aeroscraft width and the two jumbo jet commercial airliners?"

Solve It! Multi-step problem solving

- Lesson 1 - pairs, related 3-step problems
- Lesson 2 - pairs, 3-step problem
- Lesson 3 - pairs, 3-step problem


## Fraction Action

- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot
$X$ Marks the Spot
- Lesson 1 - BLM Fraction Action and X Marks the Spot
- Lesson 2 - BLM Fraction Action and X Marks the Spot
- Lesson 3 - BLM Fraction Action and X Marks the Spot

CGI

- Lesson 1 - rate, measurement division
- Lesson 2 - rate, multiplication (assessment item 7)
- Lesson 3 - price, partitive (assessment item 6)

| Assessment Items <br> Students are introduced to and practice the skills necessary for success on the following assessment items: 1, 2, 3, 6, 9 | Unit 5, Lesson 3 <br> Grades 7-8 <br> Daily Routine - continued |
| :---: | :---: |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
|  | OPTIONAL <br> Target Number <br> - Lesson 1 - Target Number 10 <br> - Lesson 2 - Target Number 30 <br> - Lesson 3 - Target Number 60 |
|  | Graphing: <br> Omitted for this Unit |
|  | OPTIONAL <br> Money Matters (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

Unit 5 Lesson 3 - Daily Routines - Measurement Lab
One per student

## Aeroscraft Investigation (3 of 3) - Measurement Lab Record Sheet

Students should work in small groups.

## Materials:

- trundle wheel
- primary timers
- distance markers


## Task:

Students revisit Distance \#1 (length of Aeroscraft).

1) Using the trundle wheel, measure and mark the width (cabin width) of the Aeroscraft.
2) Compare the Aeroscraft cabin width to the cabin widths of the Boeing 747 (20 feet) and Boeing 777 (36 feet).
3) What is the percent of difference in the Aeroscraft width and the two jumbo jet commercial airliners?"

## Unit 5 Lesson 3 - Daily Routines - Solve It! Problems (Pairs)

One per student
Solve your own problem today, showing your work.

## Partner \#1 - Problem 5:

After the second month of walking dogs, Blia and Nu were very comfortable with their routines. They each had multiple dogs per visit this month. Blia's first visit was now two dogs at $\$ 9$ each; Nu's first visit was four dogs at $\$ 9$ each; both had three dogs on their second visit at $\$ 9$ each. Blia found a new waste disposal system with shovel and bags. Each had purchased two sets at $\$ 8.59$, and they shared the cost of buying five packages of 72 refill bags at $\$ 9.43$ each. Business was good! They both put $10 \%$ of their earnings into a savings account. What was their combined profit, excluding the savings, after these 20 days?

| Problem Solution | Solution Verification <br> Name: |
| :--- | :--- |
|  |  |

Unit 5 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

| Materials: |
| :--- |
| None for this activity |

Task:
Gabriella's soup recipe calls for $4 \frac{1}{2}$ cups of broth along with the vegetables and meat. If she is to cook the recipe until the broth is reduced by $15 \%$, how many cups of broth will be left?

## $X$ Marks the Spot

| Write a word problem that this equation represents. Then solve for $x$. |
| :--- | :--- |
| $\mathbf{4 x + 3}=\mathbf{1 9}$ |
|  |
|  |

## Materials

- Vocabulary BINGO card
- Vocabulary BINGO instructions found in Activity 9 on website: http://www.teachnet.com/les son/langarts/wordwall06259 9.html
- BLM - Math, practice / application - completed yesterday
- BLM Queen Mary 2

Photograph

- highlighters
- CLASSROOM set of articles for the lesson.
http://www.teachnet.com/lesso n/langarts/wordwall062599.ht ml


## Literature Selection

Article - "How the Aeroscraft will Work"
http://abcnews.go.com/Techno
logy/story? $\mathrm{id}=1644771$ \&page
ㄹ1
Math Vocabulary
scale factor
similarity
similar
proportion
percent
ratio
interest
tax

## Literature Vocabulary

inhabit
vehicle
conventional
luxury
environment
configured
amenities
vertical

ELPS (English Language Proficiency Standards):
2D, 2E, 2I, 3D, 3F, 4G, 4J, 5B

## Unit 5, Lesson 3 <br> Classroom Lesson <br> Grades 7-8 <br> G30

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Compare problem solving strategies with peers.


## Reading Objective:

- Summarize learning about the Aeroscraft.
- Paraphrase key details from a science feature article.

Language Objectives:

- Summarize learning about the Aeroscraft.
- Discuss how the Aeroscraft will work.
- Discuss problem solving strategies.
- Explain problem solving strategies to peers.


## BEFORE READING <br> Building Background - Literature and Vocabulary Summarizing

Have students summarize what they have learned this week about the Aeroscraft. They can refer to the Venn Diagram and the Chart from Lessons 1 and 2. Have students first share with a small group, and then have groups share with the class. Help students use the literature vocabulary when appropriate.

## DURING READING

Comprehensible Input - Literature: Article \#3
Today's article is very ambitious. It is a highly scientific text with many unfamiliar vocabulary words and science concepts. It is unrealistic to try explaining every single unfamiliar word (and science concept) to students. Instead, today's reading is designed to help students tackle a challenging text by gleaning the key details from each paragraph. You will help them paraphrase the key information in their own words, to express these complex concepts with everyday words.

Leave the mystery picture as the focal point as you read aloud the article: "How the Aeroscraft will Work"
http://abcnews.go.com/Technology/story?id=1644771\&page=1.


|  | Unit 5, Lesson 3 Grades 7-8 <br> Classroom Lesson - continued 635 |
| :---: | :---: |
| Language Extension <br> Guess My Word <br> Whenever you have a few extra minutes during the rest of the week, you can continue to help students review all of the summer vocabulary by playing a quick game of "Guess My Word." Choose a word from the wall, and give students clues to determine which word it is. This is a great "filler" activity, and a fun way to provide continued practice with the vocabulary words. | Proposed Uses <br> - Repeat these same steps for this section, displaying the following three questions as you progress through the section: <br> - "Why would the Aeroscraft be like a luxury cruise ship?" <br> - "Why would the Aeroscraft be a good cargo ship?" <br> - "How else could people use the Aeroscraft?" <br> Note: Students will need the information in the yellow box on page three of the article for the TV lesson, as well as the knowledge gleaned from the reading. <br> AFTER READING <br> Personal Response and Evaluation <br> Ask students what their opinion of the Aeroscraft is. Do they think this type of vehicle is a good idea? Would they travel in an Aeroscraft? What amenities would they want to have on the Aeroscraft? <br> Practice and Application - Vocabulary <br> BINGO Game <br> - Tell students that you are going to practice summer vocabulary today. <br> - Read each word on the word wall with the students, and have students share which book each word came from. How was the word used in that book? <br> - Note the words that gave students difficulty, and separate them to one side. These will be the words students can choose from for their BINGO boards. Pull enough words so you have at least 30 from which to choose. <br> - Use the BLM provided, and the directions found: http://www.teachnet.com/lesson/langarts/wordwall062599.html Activity 8. <br> - Play Vocabulary BINGO as per instructions on the noted website. Students should select words today for the BINGO cards from the words you have selected. |


| Source of "mystery picture:" http://www.news.com/2300-11397_3-6046252-1.html | Unit 5, Lesson 3 Grades 7-8 <br> Classroom Lesson - continued 6.95 |
| :---: | :---: |
|  | When the game is over, and someone has made BINGO, let students share their cards with other students, reading words to one another and using the words in sentences |
|  | TRANSITION MATH <br> Building Background - Math |
|  | Have student volunteers talk about how they solved the follow-up lesson activity from Lesson 2 . Be sure that you are encouraging multiple strategies. Always ask, "Did someone solve this in a different way?" Then let them present. Other students should be able to ask questions in a positive manner. |
|  | Please read through Lesson 2 TV Lesson if you have questions about expectations. These are certainly not the only strategies that can be used to solve the problems; however, if students do not already have their own strategies, these will help them see the relationships in order to solve the problem. |
|  | Objectives <br> Review both language and math objectives, making sure students understand how they accomplished each. |

Unit 5 Lessons 3 - Classroom Lesson
One per student
Vocabulary BINGO


| Materials <br> - Article "How the Aeroscraft Works" <br> - BLM Aeroscraft Scale Model <br> - 4-function calculator <br> Math Vocabulary <br> scale factor <br> similarity <br> similar <br> proportion <br> percent <br> ratio <br> interest <br> tax | Unit 5, Lesson 3 Math Lesson Math Objectives:------------------------------------------------------------ • Solve similarity problems using scale factors and proportional - $\quad$ Dratios. Language Objectives: - Discuss problem represent similar objects. - Write out solutions for solving problems. - Discuss how to set up ratios to find scale factors. - $\quad$ Explain what a scale factor means. |
| :---: | :---: |
| Literature Vocabulary <br> inhabit <br> vehicle <br> conventional <br> luxury <br> environment <br> configured <br> amenities <br> vertical | Building Background <br> During your measurement activities over the past three lessons, you have been measuring various lengths and comparing the size of the Aeroscraft to the size of jumbo jets now being used. You might not even have been able to find a space large enough to measure a length two football fields long! We're going to scale down the size a bit during this lesson. <br> Comprehensible Input <br> First, on pg. 2 of your article from Lesson 3 you will find an Aeroscraft Statistics chart. You will need this chart. Please turn to it now so that it is handy. <br> The dimensions on this chart give us the outside measures of the Aeroscraft. Any measures used in earlier lessons were inside measures. So we'll see some different measures from what you've worked with in the past. <br> Using the diagram on pg. 1 of your article and the statistics chart on pg. 2 as guides, we're going sketch the Aeroscraft in the rectangle on your handout. <br> You'll also need the handout with the grids. The cells in the top rectangle were designed so that each cell $=50$ feet. If that is so, how many cells long should we make our drawing if we're using the dimensions on pg. 2 of the article? <br> We want to know the scale, really. We know that 1 cell $=50$ feet We know the length of the Aeroscraft is 647 feet. <br> 50 feet is to 1 cell as 647 feet is to $x$ cells: $\frac{50 \mathrm{ft}}{1 \mathrm{cell}}=\frac{647 \mathrm{ft}}{x \text { cells }}$ <br> (Solve: Round 12.94 cells to 13 cells.) |


| Unit 5, Lesson 3 |
| :--- | :--- |
| Math Lesson - continued |
| The middle line on the picture looks like the longest part of the body, so <br> let's draw a 13 grid line that is centered in the rectangle. One way to <br> find the center is to count. Another way is to fold the paper in half <br> (demonstrate side to side), and crease it. Open it, then fold it in half the <br> other way (demonstrate top to bottom) and crease it. <br> Now we have a midpoint from which to draw our line. 13 grids is an <br> odd number, so half of 13 is.....6.5. We need 6 $\frac{1}{2}$ cells to the left and <br> $6 \frac{1}{2}$ cells to the right. Draw your line, please. |
| Label this line 647 feet. That is the length. |
| (Repeat the same process for the height. Again, the Aeroscraft looks |
| tallest in the middle, so draw your height line there once you have |
| found the proportion.) |



|  | Unit 5, Lesson 3 <br> Math Lesson - continued <br> $------------------------------------------------------------~$ <br> What does $(\div 1200)$ mean? It means that our original measurements <br> need to be scaled down by a fractional factor of $\frac{1}{1200}$ to produce the <br> model measurements drawn on our grids. It's the SCALE FACTOR! <br> The Follow-up problems will be much simpler. Use the same process <br> and thinking to work your way through them with a partner or group. <br> MAS Space <br> Explain the difference in the "math movie" or the action that you see <br> when you read the problems for Rate, measurement division and Rate, <br> partitive division. What are you finding in each? |
| :--- | :--- |
| Objectives: <br> Read through the math and language objectives, making sure that <br> students understand how they accomplished each. |  |

One per student

## Aeroscraft Scale Model

Work with your teacher and class to sketch a scale model drawing of the Aeroscraft. Show math work in the space provided at the bottom of this sheet.


Materials

- BLM King of the MountainGame Instructions
- King of the Mountain Game Board
- game markers
- dominoes (1 set per pair)
- graph paper
- scratch paper
- BLM Recursive Review Problems Lessons 1-3

Math Vocabulary
scale factor
similarity
similar
proportion
percent
ratio
interest
tax

## Literature Vocabulary

inhabit
vehicle
conventional
luxury
environment
configured
amenities
vertical

Unit 5, Lesson 3
Grades 7-8
Follow-up


Math Objectives:

- Solve similarity problems using scale factors and proportional ratios.
- Draw models to represent similar objects.


## Language Objectives:

- Discuss problem solving strategies with peers.
- Write out solutions for solving problems.
- Discuss how to set up ratios to find scale factors.
- Explain what a scale factor means.
- Write and explanation of how proportions can help you find scale factors.


## Practice and Application

Play the game, King of the Mountain. Game board and instructions can be found in Unit 4, Lesson 2.

## QUESTIONS

- How do you know what rectangle to draw?
- What is scale factor?
- How does the scale factor tell you the dimensions of the new shape?
- How does this activity relate to the Math Lesson?


## Recursive Review

- Susan's savings account earns 5\% interest each month. If she opened the account with $\$ 200$ on June 1, and did not deposit or withdrawal any money, what was her balance at the end of July?


## OD Writing Topics

## Independent Writing Topic

Students will have a daily writing activity which will incorporate the day's focus math vocabulary.

- How can proportions help you find scale factor?


## Objectives

Review the math and language objectives to make sure that they were accomplished and that the students realize how they were accomplished.


Unit 5 Lesson 3 - Snack Fraction
One per student

## Bagels and Cream Cheese - Snack Fractions

Work with your partner to solve the problems.

1. Once you have shared your bagels and cream cheese, use pictures, numbers and words to describe how your two shares combine to make $100 \%$.

2. Now, pretend that there were six of you. First, draw a picture of how the snack foods would be shared among you. Then tell what percent of the snack your portion would be. Show your work.
3. What is the percent of increase in your share from one-sixth to one-half?

| This portion of the curriculum is NOT required, but should be used to supplement and enrich the Unit's activities. | Enrichment Suggestions <br> Unit 5 Aerospace Articles <br> Math Walk <br> After Lesson 3 students will have measured out the "floor" of the Aeroscraft. Have them walk the perimeter of the craft. How long does it take them? How far around is the perimeter? After timing the walk, come back inside and determine the approximate perimeter of the Aeroscraft. <br> Technology Connection <br> - Fraction, Decimal, Percent practice, including games: http://www.bbc.co.uk/skillswise/numbers/fractiondecimalperce ntage/ comparing/comparingal13/index.shtml (repeat) <br> - This math puzzler on multiplication is really fun - try it, it works! http://freakonomics.blogs.nytimes.com/2007/09/05/a-little-math-puzzle-to-ponder/ <br> - Balanced Literacy Ideas: http://t4.jordan.k12.ut.us/cbl/ <br> More Curriculum Connection Ideas off the Web <br> - Social Studies: What would life be like as a crew member of the Aeroscraft? Read several articles again to see all of the amenities that will be provided. Who are the people who will work on the ship? What are their jobs? How will this be different and like living in a small town? <br> - Science: Fascinating middle school lesson(s) on buoyancy based on the Aeroscraft. Select portions of the unit to fit your class needs and time. <br> http://www.coe.berkeley.edu/cues/pep/adept/Particle_Party_Bal loons_all.pdf <br> - Art: The Aeroscraft will be an innovation in commercial air travel. Thinking about land travel, though, we are still using the same technology of the original automobiles. Have the students design a new land vehicle, one that does not depend on petroleum products, does not look anything like our present land vehicles. |
| :---: | :---: |

$\qquad$ ,

This will be the last Family Fun game I bring home.

We can enjoy all of our game cards for the rest of the summer. I bet we'll really understand the math concepts when we start school in the Fall!


Here are some strategies I'll need to solve some of the problems in this unit...
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Sincerely,

BLM All-School Unit 5, Lesson 3

| Problem Letter | Kinder | 1-2 | 3-4 | 5-6 | 7-8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 5 baby ducks | 23 | 10 | 0.5 | 3 units |
| B | 9 baby ducks | 39 | 6 | $8 \frac{1}{8}$ | 1 unit |
| C | 9 baby ducks | 70 | 48 | \$0.01 | 2 units |
| D | 3 kernels | 37 | 8 cells | 1,111,111,110 | 50\% |
| E | 8 kernels | 6 | 6 bees | 54.657 grams salt | 50\% |
| F | 1 crumb | 17 | 40 plants | $11.92 \%$ chemical B | 75\% |
| G | $\begin{array}{ll} 88 & 80 \\ 80 & 8 \\ 10 \end{array}$ | 21 |  | \$27.45 tax | 20 |
| H | $\text { - coo } \phi \phi \phi \phi$ | 66 |  | \$350 tip | 32.5 |
| I | Half OR one of 2 equal pieces OR fair shares. (See Kinder Special Instructions for answer to second part.) | $\frac{1}{8}$ |  | \$90 interest | 18 |
| J | Dime | Cut the cake into 8 shares | 5.21 | \$230 charged | \$5.00 earned |
| K | Penny | Yes. There are 2 equal pieces | $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35 \div 7=5 \\ & 35 \div 5=7 \\ & \hline \end{aligned}$ | 3 cups cashews | \$6.00 earned |
| L | Nickel | 8 | xx xx xx <br> xx xx xx | 10\% tip | $\$ 16.74$ total bill with tip |
| M | Quarter | $4+5=9$ | Eleven and seven hundredths | False. Scale factor not consistent | \$3.00 tip |
| N | Top group | $12-2=10$ |      <br>      <br>    $2 / 4$  <br>      <br> $4 / 8$     | True. Scale factor $=(\div 4) \text { or }\left(x \frac{1}{4}\right)$ | \$11.10 tip |
| 0 | Bottom group | 12 | 0.3 | 120 cotton balls: 1 bag | \$6.97 |
| P | 14 | 9 | Line closest to 0 | 48 babies | \$20.00 retail |
| Q | 9 | 7, 3 | Line in the middle | $\frac{12}{12}$ or 1 whole | $\$ 22.50$ sales price |
| R | 15 beans Card 15 | $\begin{aligned} & 9+5-14 \\ & 5+9=14 \\ & 14-9=5 \\ & 14-5=9 \\ & \hline \end{aligned}$ | Between 0.5 and 0.75 , closer to 0.75 | $2 \frac{7}{15}$ | $\$ 9.00$ sales price |




Units 5 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class

## Print on goldenrod paper.

## Family Fun - Problem Cards (1 of 2)



Units 5 Lesson 3 - FAMILY FUN
One per student for home
One per partner pair in class
Print on goldenrod paper.
Family Fun - Problem Cards (2 of 2)

| J. <br> $\$ 100$ is in the bank. Bank is <br> paying $5 \%$ interest. How much <br> is earned in 1 month? | K. <br> $\$ 150$ is in the bank. Bank is <br> paying $4 \%$ interest. How much <br> is earned in 1 month? | L. <br> The meal cost $\$ 13.95$. That <br> would be the total bill with a <br> $20 \%$ tip? |
| :--- | :--- | :--- |
| M. <br> The meal cost $\$ 15$. That would <br> the waiter receive if a $20 \%$ tip <br> was left? | N. <br> What would the tip be at $30 \%$ <br> on $\$ 37.00$ ? | O. <br> The car wash cost $\$ 9.95$. There <br> is a sale for $30 \%$ off today only. <br> What would the car wash cost? |
| P. | Q. <br> The dress cost $\$ 15.00$ on sale. <br> The regular price was <br> discounted $15 \%$. What was the <br> regular price? | Seed cost $\$ 25$ for a 100 pound <br> bag. The store ran a special for <br> price? |

Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions

## Materials:

- Family Fun Generic Game Board
- Family Fun Movement Cards
- Unit 5 Family Fun Problem Cards for grades 7-8 (green)
- Family Fun Answer Key for Unit 1 (all grade bands)
- Unit 5 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions


## Solution Expectations

Problems A-C
This problem set should be solved by finding a scale factor among the given measurements.
Numbers are compatible enough for students to use mental math strategies to solve.

## Problems D - I

Simple percent problems. Students learned several strategies to solve the problems in this set. Bar modeling and patterns if multiplying and dividing by ten would work great.

## Problems J - R

Students have had extensive experience with calculating percents of interest, discounts, and tips. Bar modeling is a preferable strategy for this set, however any strategy is acceptable.

## Unit 5 - Aeroscraft Articles

## Math Matters 2014 - In-Home Instruction

## Math Objectives <br> Math Lesson 1

- Use ratios to determine rates of travel, distances traveled, and time traveled.


## Math Lesson 2

- Use any strategy to solve percent problems including percent discounts, interest, and tips.


## Differentiate

Math Lesson 1 - students explore travel distance, travel rate, and travel time in reference to the Aeroscraft.

Math Lesson 2 - students use strategies to solve percent problems including percent discounts, interest, and tips in reference to the cruise ship Queen Mary 2.

## Snack Fraction Notice

All snack fractions are common throughout the grade bands. All grade bands have daily snack fraction activities provided. All snack fractions for a unit in a specific grade band will practice the same set of skills. Therefore, you may choose from any of the three activities. Lesson 2, Crackers and Nutella is the simplest snack to transport.

## Materials

Math Lesson 1

- BLM Aero-Travel


## Math Lesson 2

- paper and pencil


## Family Fun

- Family Fun Generic Game Board
- Family Fun Movement cards
- Unit 5 Family Fun-Problem Cards
- Family Fun Answer Key from Unit 1 (all grade bands)
- Unit 5 Family Fun Special $7^{\text {th }}-8^{\text {th }}$ Game Instructions
- game markers


## Snack Fractions (Math Lesson 2)

- 2 paper dessert plates
- 2 paper towels
- 1 plastic knife
- 4 graham crackers
- 2 T Nutella

All items listed above per partner pair

- BLM Crackers and Nutella-Snack Fractions *Allergy Warning - Please substitute a different spread if nut allergies are present.


## QUESTIONING

As a result of this lesson, your students should be able to respond to the following:

- What does it mean to find the "percent of" something?
- How is the strategy in this lesson related to the discount rectangle in previous lessons?
- What data are you trying to find?
- Explain your strategy to me.
- How are calculating percents of discount, interest, and tips related?


## Math Vocabulary

scale factor, similarity, similar, proportion, percent, ratio, interest, tax

## CGI Problem

- rate, multiplication
- rate, measurement division
- rate, partitive division


## Journal Writing

Explain how to find the percent of a quantity and how this relates to solving the various types of discount problems.

## Family Fun

A generic game board is being used in all grade levels, differentiated by game cards specific to the grade level.

## Snack Fractions

Students divide their snack into halves and sixths, then find the percent of increase in their portion from one to the other.

## Assessment

Students will be introduced to and practice skills for all items on the assessment.
Grades 7-8 Bridges! Amazing Structures to Design, Build and Test by Carol A. Johmann and Elizabeth J. Rieth
Overview

| Lesson Segment | Math Objectives | Language Objectives | Activity | Materials | BLM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine 10-15 minutes | Post-assess summer skills | Post-assess summer skills | Post-assessment |  | - post-assessment |
| Classroom <br> Lesson <br> 30-45 minutes | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. <br> Make generalizations from patterns or sets of examples and nonexamples. Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. <br> Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based on the results of your investigations. | Vocabulary Create Frayer model posters for each word. Discuss EiE Engineering Design Process. <br> Literature <br> Basics of bridges <br> Transition to Math <br> Explore forces on a suspension bridge. | - 7 pieces of large construction paper <br> - EiE Engineering Design Process Posters ordered from http://www.eiestore.co m/posters.html <br> - rope strong enough to play "tug-o-war" |  |
| TV Lesson <br> 30 minutes | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. <br> Make generalizations from patterns or sets of examples and nonexamples. <br> Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. <br> Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based on the results of your investigations. | Vocabulary Use literature and math vocabulary pervasively in the lesson. <br> Comprehensible Input Demonstrate how students will build the cofferdam. | - pan <br> - sand or dirt <br> - water <br> - Popsicle sticks (at least 30 per group) <br> - masking or painter's tape <br> - plastic wrap <br> - turkey baster (or eye dropper) | - BLM Cofferdam Instructions |


| Follow-up <br> Lesson <br> 2-2.5 hours <br> (including Snack <br> Fractions) | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. <br> Make generalizations from patterns or sets of examples and nonexamples. <br> Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. <br> Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based on the results of your investigations. | Practice and Application Students build cofferdams. | - pan <br> - sand or dirt <br> - water <br> - Popsicle sticks (at least 30 per group) <br> - masking or painter's tape <br> - plastic wrap <br> - turkey baster (or eye dropper) | - BLM Cofferdam Instructions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Snack Fractions | Use addition, subtraction, multiplication and division to solve problems involving fractions, decimals, ratios, and percents. Convert between fractions, decimals, and percents. Estimate to find solutions to problems involving fractions, decimals, and percents. | Discuss how fractions, decimals, ratios, and percents can be used to solve realworld problems. | Students will work in pairs and explore fraction and decimal concepts through fair-sharing Energy Balls. | - Energy Balls (homemade or store prepared - recipe provided) <br> *Allergy Warning please substitute a different mix for the entire class if nut allergies are present. <br> - quart sized sandwich bag <br> - 4 paper plates <br> - 4 paper towels <br> - 4 plastic knives All items listed above per group of four |  |

Grades 7-8 Bridges! Amazing Structures to Design, Build and Test by Carol A. Johmann and Elizabeth J. Rieth
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Materials | BLM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine 30-45 minutes | Model and solve multistep word problems. Solve problems involving fractions, ratios, and proportions. | Speak to partners, teacher, and class using vocabulary. Discuss problem solving process and strategies. | Essential: <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> Money Matters |  | - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 2-3 CGI Bridges! Amazing Structures to Design, Build and Test |
| Classroom <br> Lesson <br> 1 hour-1.5 hours | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. <br> Make generalizations from patterns or sets of examples and nonexamples. Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based on the results of your investigations. | Vocabulary Review posters and make additions if requested by students. <br> Literature <br> Students read about and research famous suspension bridges in the United States. <br> Transition to Math Students explore how the forces work on an arch bridge. | - computer with Internet access (1 per class or 1 per pair of students) <br> - printer | - BLM My Suspension Bridge Template |
| TV Lesson 30 minutes | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. <br> Make generalizations from patterns or sets of examples and nonexamples. <br> Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. <br> Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based | Vocabulary Use literature and math vocabulary pervasively in the lesson. <br> Comprehensible Input Demonstrate how students will build the suspension bridge. | - 2 kitchen chairs (or any chair that is similar in size and shape) <br> - spool of heavy string <br> - 4 heavy books <br> - masking tape <br> - cardboard (at least 1 ft x 3 ft ) <br> - scissors <br> - single hole punch <br> - spool of thread or light | - BLM Hang a Suspension Bridge Instructions |


|  |  | on the results of your investigations. |  | string <br> - load (of choice object available in room) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up <br> Lesson <br> 30 minutes - 1 <br> hour <br> (including Snack <br> Fractions) | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. Make generalizations from patterns or sets of examples and nonexamples. <br> Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based on the results of your investigations. | Practice and Application Students will build a suspension bridge. | - 2 kitchen chairs (or any chair that is similar in size and shape) <br> - spool of heavy string <br> - 4 heavy books <br> - masking tape <br> - cardboard (at least 1 ft x 3 ft ) <br> - scissors <br> - single hole punch <br> - spool of thread or light string <br> - load (of choice object available in room) | - BLM Hang a Suspension Bridge Instructions |
| Snack Fractions | Use addition, subtraction, multiplication and division to solve problems involving fractions, decimals, ratios, and percents. <br> Convert between fractions, decimals, and percents. Estimate to find solutions to problems involving fractions, decimals, and percents. | Discuss how fractions, decimals, ratios, and percents can be used to solve realworld problems. | Students will work in pairs and explore fraction and decimal concepts through fair-sharing a turkey wrap. | - 1 oz turkey <br> - 1 slice Swiss cheese <br> - 1 leaf lettuce <br> - 1 TBS cranberry relish <br> - 1 burrito sized tortilla <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 2 plastic knives <br> All items listed above per partner pair |  |

Grades 7-8 Bridges! Amazing Structures to Design, Build and Test by Carol A. Johmann and Elizabeth J. Rieth
This is a quick snapshot of each of the three math lessons for this unit. For detailed instructions, balanced literacy objectives and enrichment ideas, refer to the complete
lesson plans for each lesson.

| Lesson Segment | Math Objectives | Language Objectives | Activity | Materials | BLM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Daily Routine $30-45$ minutes | Model and solve multistep word problems. Solve problems involving fractions, ratios, and proportions. | Speak to partners, teacher, and class using vocabulary. Discuss problem solving process and strategies. | Essential: <br> - Fraction Action <br> - $X$ Marks the Spot <br> - CGI <br> Optional: <br> Money Matters |  | - BLM Fraction Action and $X$ Marks the Spot <br> - BLM Lessons 2-3 CGI Bridges! Amazing Structures to Design, Build and Test |
| Classroom <br> Lesson <br> 1 hour - 1.5 <br> hours | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. <br> Make generalizations from patterns or sets of examples and nonexamples. Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. <br> Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based on the results of your investigations. | Vocabulary <br> Review posters and make additions if requested by students. <br> Literature <br> Students read about and research famous bridges that move/lift globally. <br> Transition to Math Students explore how to balance like a bridge. | - computer with Internet access (1 per class or 1 per pair of students) <br> - printer | - BLM My Bridge that Lifts Template |
| TV Lesson 30 minutes | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. <br> Make generalizations from patterns or sets of examples and nonexamples. Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. <br> Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based | Vocabulary <br> Use literature and math vocabulary pervasively in the lesson. <br> Comprehensible Input Demonstrate how students will build a bridge that moves. | - hole punch <br> - scissors <br> - string <br> - 2 empty cereal boxes <br> - 1 piece of thin cardboard (about the size of the boxes) <br> - drinking straw cut in half | - BLM Lift That Bridge! Instructions |


|  |  | on the results of your investigations. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Follow-up <br> Lesson <br> 30 minutes - 1 <br> hour <br> (including Snack <br> Fractions) | Identify math in everyday situations. <br> Explain and record observations using objects, words, pictures, numbers and technology. <br> Make generalizations from patterns or sets of examples and nonexamples. <br> Justify why an answer is reasonable and explain the solution process. | Listen to classmates and to teacher discuss and read. Speak, read and write vocabulary words in context. Brainstorm and discuss the various problems given. Create a chart of sorted items and explain how you decided to sort them. <br> Create a list of things to do before building a skyscraper can begin. <br> Justify your conclusions based on the results of your investigations. | Practice and Application Students build a bridge that moves. | - hole punch <br> - scissors <br> - string <br> - 2 empty cereal boxes <br> - 1 piece of thin cardboard (about the size of the boxes) <br> - drinking straw cut in half | - BLM Lift That Bridge! Instructions |
| Snack Fractions | Use addition, subtraction, multiplication and division to solve problems involving fractions, decimals, ratios, and percents. <br> Convert between fractions, decimals, and percents. Estimate to find solutions to problems involving fractions, decimals, and percents. | Discuss how fractions, decimals, ratios, and percents can be used to solve realworld problems. | Students will work in pairs and explore fraction and decimal concepts through fair-sharing a veggie pizza. | - 1 personal pan pizza <br> - 2 individual servings of juice <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 2 plastic knives <br> All items listed above per partner pair |  |

## Project SMART/ Math MATTERS 2014

| Grade Level: 7-8 | Unit 6/Lessons 1-2-3 |
| :---: | :---: |

## Daily Routine Math Objectives:

Model and solve multistep word problems.
Solve problems involving fractions, ratios, and proportions.
Solve for a variable.

## Daily Routine Language Objectives:

Speak to partners, teacher, and class using vocabulary.
Discuss problem solving process and strategies.

## Unit Math Objectives:

Identify math in everyday situations.
Explain and record observations using objects, words, pictures, numbers and technology.
Make generalizations from patterns or sets of examples and non-examples.
Justify why an answer is reasonable and explain the solution process.

## Unit Language Objectives:

Listen to classmates and to teacher discuss and read.
Speak, read and write vocabulary words in context.
Brainstorm and discuss the various problems given.
Create a chart of sorted items and explain how you decided to sort them.
Create a list of things to do before building a skyscraper can begin.
Justify your conclusions based on the results of your investigations.

## Unit Science Objectives:

Demonstrate safe practices and the use of safety equipment as needed during investigations.
Plan and implement descriptive investigations, including asking well-defined questions, making inferences, and selecting and using appropriate equipment or technology to answer the questions.
Collect and record data by observing and measuring, using descriptive words and numerals such as labeled drawing, writing, and concept maps
Analyze data and interpret patterns to construct reasonable explanations from data that can be observed and measured.
Communicate valid, oral and written results supported by data.
Brainstorm and discuss the various problems given.
Generate charts to describe the outcomes of investigations.

## Technology Objectives:

Use research skills and electronic communication, with appropriate supervision, to create new knowledge.

```
Vocabulary
Math and Language: technology, engineer, architect, scientist, environmentalist, load, dam, suspension
```


## Resources/Literacy Links

Bridges! Amazing Structures to Design, Build, and Test
by Carol A. Johmann and Elizabeth J. Rieth

Lesson Sequence - Note the suggested time differences. Adjustments were made to accommodate the STEM
Projects. Please modify to meet the needs of your students.

- Daily Routine: $10-15$ minutes
- Classroom Lesson: 30-45 minutes
- Math Lesson: 30 minutes
- Follow-up including Snack Fractions: $2-2.5$ hours

|  | Multiplication | Measurement Division | Partitive Division |
| :---: | :---: | :---: | :---: |
|  | Pile it on! Our class made some different kinds of bridges. We tested them by seeing how many paper clips they could hold. If there are $\qquad$ students in our class and each student used an average of $\qquad$ clips, how many clips did we use in all? <br> $12,12 \quad 15,15 \quad 23,19$ | Pile it on! Our class made some different kinds of bridges. We tested them by seeing how many paper clips they could hold. The class used a total of $\qquad$ paper clips with each person using an average of $\qquad$ clips. How many students were in the class? $360,18 \quad 408,34 \quad 154,14$ | Pile it on! Our class made some different kinds of bridges. We tested them by seeing how many paper clips they could hold. The class used a total of $\qquad$ clips. If there are $\qquad$ students in the class, how many clips did each student use? $135,9 \quad 234,13 \quad 336,16$ |
|  | The Wonder Bridge in London opens about 500 times per year to let sailing vessels go through. How many times has the bridge raised over the past __ years? $\begin{array}{lll} 10 \quad 15 \quad 25 \\ \hline \end{array}$ | During one period of time, a total of 162,414 cars crossed the San Francisco Bridge. If 6767.25 cars crossed per hour, how many hours did it take for the 162,414 cars to cross? | The Wonder Bridge in London opens 500 times per year to let sailing vessels go through. There are 365 days in a year. How many times on average does it raise per day? |
| 式 | With the opening of the Confederation Bridge between New Brunswick and Prince Edward Island, people can now cross the strait in 10 minutes for $\$ 35$. If an average of $\qquad$ cars cross the bridge each day, how much money is collected each day? $\begin{array}{lll} 56 & 75 & 123 \end{array}$ | With the opening of the Confederation Bridge between New Brunswick and Prince Edward Island, people can now cross the strait in 10 minutes. If $\qquad$ was collected in one day and it cost each car $\$ 35$, how many cars crossed the bridge? $\$ 2,030 \quad \$ 3,570 \quad \$ 5,810$ | Building a new bridge costs a lot of money! If the total cost of a bridge is $\$ 104,000$ and the bridge is 650 square feet, how much does it cost to build a bridge per square foot? |
| 易 | An I-Beam used in bridge building could weigh $3 / 4$ ton for a 20 foot beam. How many tons would 250 beams weigh? How many pounds would that be? | One bridge spans a total of 183.75 feet. Each truss takes up 12.25 feet. How many trusses are there? | You want to build a bridge over the creek. The span is $21 \frac{1}{4}$ feet. If you used $421 / 2$ planks set side-by-side, how wide was each plank? |
|  | The Golden Gate bridge is 2.5 times longer than the Brooklyn Bridge. The Brooklyn bridge is 1600 feet long. How long is the Golden Gate Bridge? | Bridge maintenance and repairs are expensive! By one estimate, by paying a crew $\$ 125,000$ a year to maintain a bridge, $\$ 375,000$ in repairs later on could be avoided. How many times more expensive is it to repair rather than maintain a bridge? | In the olden days, the Wonder Bridge raised 6000 times per year to allow sailing vessels through. That was 12 times more than the times it raises per year now. How many times per year does the Wonder Bridge raise nowadays? |

Unit 6 CGI Problems for Bridges!

|  | ¡Apílalo! Nuestra clase hizo algunos tipos de puentes distintos. Los probamos viendo cuántos clips de papel podrían sostener. Si hay $\qquad$ estudiantes en nuestra clase y cada estudiante usaba en promedio $\qquad$ clips, ¿cuántos clips usamos al final? $12,12 \quad 15,15 \quad 23,19$ | ¡Apílalo! Nuestra clase hizo algunos tipos de puentes distintos. Los probamos viendo cuántos clips de papel podrían sostener. La clase usó en total $\qquad$ clips para papel con cada persona utilizando un promedio de $\qquad$ clips. ¿Cuántos estudiantes había en la clase? $360,18 \quad 408,34 \quad 154,14$ | ¡Apílalo! Nuestra clase hizo algunos tipos de puentes distintos. Los probamos viendo cuántos clips de papel podrían sostener. La clase usó en total $\qquad$ clips. Si hay $\qquad$ estudiantes en nuestra clase, ¿cuántos clips usó cada estudiante? $\begin{array}{cc} 135,9 & 234,13 \\ 16 \end{array}$ |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 무 } \\ & \text { 응 } \\ & \text { 음 } \end{aligned}$ | El Wonder Bridge en Londres abre unas 500 veces al año para dejar que los barcos pasen navegando a través de él. ¿Cuántas veces se ha levantado el puente en los últimos $\qquad$ años? $10 \quad 15 \quad 25$ | Durante un período de tiempo, un total de 162,414 autos cruzó el Puente San Francisco. Si 6767.25 autos cruzaron por hora, ¿cuántas horas se necesitaron para que cruzaran 162,414 autos? | El Wonder Bridge en Londres abre unas 500 veces al año para dejar que los barcos pasen navegando a través de él. El año tiene 365 días. ¿Cuántas veces en promedio se levanta al día? |
| $\begin{aligned} & \text { 응 } \\ & \text { Div } \\ & \hline 1 \end{aligned}$ | Con la apertura del Confederation Bridge entre New Brunswick y Prince Edward Island, ahora la gente puede cruzar el tramo en 10 minutos por $\$ 35$. Si un promedio de $\qquad$ autos cruza el puente cada día, ¿cuánto dinero se recauda cada día? $56$ <br> 75 | Con la apertura del Confederation Bridge entre New Brunswick y Prince Edward Island, ahora la gente puede cruzar el tramo en 10 minutos. Si se recaudó $\qquad$ en un día y a cada auto le cuesta $\$ 35$ pasar, ¿cuántos autos cruzaron el puente? $\$ 2,030 \quad \$ 3,570 \quad \$ 5,810$ | ¡Construir un puente nuevo cuesta mucho dinero! Si el costo total de un puente es \$104,000 y el puente tiene 650 pies cuadrados, ¿cuánto cuesta construir un puente por pie cuadrado? |
|  | Una Viga en I que se usa en la construcción de un puente puede pesar $3 / 4$ de tonelada para una viga de de 20 pies. ¿Cuántas toneladas pesarían 250 vigas? ¿Cuánto sería eso en libras? | Un puente abarca un total de 183.75 pies. Cada cercha abarca 12.25 pies. ¿Cuántas cerchas hay? | Quieres construir un puente sobre el arroyo. La distancia a cubrir es de $21 \frac{1}{4}$ pies. Si usaste $421 / 2$ tablones puestos lado a lado, ¿qué ancho tiene cada tablón? |
|  | El puente Golden Gate es 2.5 veces más largo que el puente de Brooklyn. El puente de Brooklyn tiene 1600 pies de largo. ¿Qué largo tiene el Puente Golden Gate? | ¡Los trabajos de mantenimiento y reparación de un puente son caros! Una cotización señala que si se paga a una cuadrilla $\$ 125,000$ al año para mantener un puente, se podría ahorrar el pago de \$375,000 en reparaciones. ¿Cuántas veces más caro es reparar que mantener un puente? | Antiguamente, el Wonder Bridge en Londres se levantaba 6000 veces al año para dejar que los barcos pasen navegando a través de él. Era 12 veces más que las que se levanta ahora al año. ¿Cuántas veces al año se levanta el Wonder Bridge hoy en día? |


| Materials <br> - post-assessment | Unit 6, Lesson 1 Grades 7-8 |
| :---: | :---: |
|  | Daily Routine |
| Math Objectives |  |
| Language Objectives Post-assessment. They are not optional. |  |
|  | ESSENTIAL |
| Math and Literature <br> Vocabulary <br> technology <br> engineer <br> architect <br> environmentalist <br> load <br> dam <br> suspension <br> Assessed TEKS for this Unit <br> 7th - 71.b,72.a, 7.3a, 7.4b <br> 8th $-8.5 \mathrm{a}, 8.5 \mathrm{e}$ | Measurement Lab omitted |
|  | Solve It! Multi-step problem solving omitted |
|  | Fraction Action <br> - Lesson 1 - omitted <br> - Lesson 2 - ( $5^{\text {th }}$ assessment item $1,2,3$ ) |
|  | $X$ Marks the Spot <br> - Lesson 1 - omitted <br> - Lesson $2-\left(6^{\text {th }}\right.$ assessment item 2$)$ <br> - Lesson $3-\left(6^{\text {th }}\right.$ assessment item 8$)$ |
|  | CGI <br> - Lesson 1 - omitted <br> - Lesson 2 - Compare Referent Unknown ( $5^{\text {th }}$ assessment item 5) <br> - Lesson 3 - Price Partitive Division ( $6^{\text {th }}$ assessment item 6) |
|  | The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits. |
|  | OPTIONAL |
|  | Target Number omitted |
|  | Money Matters <br> (If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.) |

Materials

- 7 pieces of large construction paper
- EiE Engineering Design Process Posters ordered from http://www.eiestore.com/posters html
- rope strong enough to play "tug-o-war"


## Literature Selection

Bridges! Amazing Structures to Design, Build, and Test
by Carol A. Johmann and Elizabeth J. Rieth
p. 4-10 and p. 16-19
Math and Literature
Vocabulary
technology
engineer
architect
environmentalist
load
dam
suspension

Unit 6, Lesson 1
Classroom Lesson

## Every day teachers must post the objectives on the board, read them

 to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.
## Math Objectives:

- Identify math in everyday situations.
- Explain and record observations using objects, words, pictures, numbers and technology.
- Make generalizations from patterns or sets of examples and nonexamples.
- Justify why an answer is reasonable and explain the solution process.


## Language Objectives:

- Listen to classmates and to teacher discuss and read.
- Speak, read and write vocabulary words in context.
- Brainstorm and discuss the various problems given.
- Create a chart of sorted items and explain how you decided to sort them.
- Create a list of things to do before building a skyscraper can begin.
- Justify your conclusions based on the results of your investigations.


## Science Objectives:

- Demonstrate safe practices and the use of safety equipment as needed during investigations.
- Plan and implement descriptive investigations, including asking well-defined questions, making inferences, and selecting and using appropriate equipment or technology to answer the questions.
- Collect and record data by observing and measure, using descriptive words and numerals such as labeled drawing, writing, and concept maps.
- Analyze data and interpret patterns to construct reasonable explanations from data that can be observed and measured.
- Communicate valid, oral and written results supported by data.
- Brainstorm and discuss the various problems given.
- Generate charts to describe the outcomes of investigations.





## technology

$\square$
engineer

## architect

## environmentalist

Unit 6 Lesson 1 - Classroom Lesson
Duplicate on cardstock and cut apart for word cards.

## load

## force

## dam

## suspension

Duplicate on cardstock and cut apart for word cards.

> technología
ingeniero
arquitecto

## ambientalista

Unit 6 Lesson 1 - Classroom Lesson

Duplicate on cardstock and cut apart for word cards.

## carga

## fuerza

## presa

## suspensión



| Teacher Note <br> Captain Portio will introduce <br> more basic information about <br> cofferdams. <br> http://en.wikipedia.org/wiki/Coffe <br> rdam <br> "A cofferdam (also called <br> a coffer ${ }^{[1]}$ ) is a temporary <br> enclosure built within, or in <br> pairs across, a body of water <br> and constructed to allow the <br> enclosed area to be pumped <br> out, creating a dry work <br> environment for the major <br> work to proceed. Enclosed <br> coffers are commonly used for <br> construction and repair of oil <br> platforms, bridge piers and <br> other support structures built <br> within or over water. These <br> cofferdams are usually welded <br> steel structures, with <br> components consisting <br> of sheet piles, wales, and <br> cross braces. Such structures <br> are typically dismantled after <br> the ultimate work is <br> completed." |
| :--- |

Unit 6, Lesson 1
TV Lesson - continued

## Comprehensible Input

Review the Engineering Design Process posters.
Students will build a cofferdam during Follow-up Lesson 1. Read the introduction to cofferdams on pg .29 of the literature selection.

Building the Cofferdam (taken directly from Bridges! p. 29)

1) Fill the pan halfway with sand or dirt. Add water about an inch ( 2.5 cm ) above that.
2) Use a third of the Popsicle sticks to make the inside ring of the dam. Push each stick through the sand to the bottom of the pan. The sticks should tough each other and be higher than the water.
3) Run a piece of tape along the top of the ring on the inside. Put a second ring around the first using the rest of the Popsicle sticks, leaving about a half-inch ( 1 cm ) space between. Tape along the outside of the second ring.
4) Twist a piece of plastic wrap and snake it around the space, stuffing it down as you go until you fill the space higher than the water. Fix the sticks if they moved.
5) Remove the water inside the inner ring with the baster.

## Pirate's Corner

Upload pictures of your cofferdams to MAS Space and share your experiences! Was it hard? Easy? Were you able to get the bottom completely dry? Did you run into any struggles? Did you have to make adjustments to your design?

## Objectives

Read through the math and language objectives, making sure that students understand how they accomplished each.

## Unit 6 Lesson 1 - TV Lesson and Follow-up

One per group

## Cofferdam - Instructions

## Materials:

- pan
- sand or dirt
- water
- Popsicle sticks (at least 30)
- masking or painter's tape
- plastic wrap
- turkey baster (or eye dropper)


## Instructions:

1) Fill the pan halfway with sand or dirt. Add water about an inch ( 2.5 cm ) above that.
2) Use a third of the Popsicle sticks to make the inside ring of the dam. Push each stick through the sand to the bottom of the pan. The sticks should touch each other and be higher than the water.
3) Run a piece of tape along the top of the ring on the inside. Put a second ring around the first using the rest of the Popsicle sticks, leaving about a half-inch $(1 \mathrm{~cm})$ space between. Tape along the outside of the second ring.
4) Twist a piece of plastic wrap and snake it around the space, stuffing it down as you go until you fill the space higher than the water. Fix the sticks if they moved.
5) Remove the water inside the inner ring with the baster.

*images used from Bridges! Amazing Structures to Design, Build and Test pgs.29-30



| Materials <br> - Energy Balls (homemade or store prepared - recipe provided) <br> *Allergy Warning - please substitute a different mix for the entire class if nut allergies are present. <br> - quart sized sandwich bag <br> - 4 paper plates <br> - 4 paper towels <br> - 4 plastic knives <br> All items listed above per group of four <br> Math and Literature <br> Vocabulary <br> technology <br> engineer <br> architect <br> environmentalist <br> load <br> dam <br> suspension |  <br> Students should wash their hands before this activity if using food items. <br> Math Objectives <br> - Use addition, subtraction, multiplication and division to solve problems involving fractions, decimals, ratios, and percents. <br> - Convert between fractions, decimals, and percents. <br> - Estimate to find solutions to problems involving fractions, decimals, and percents. <br> Language Objectives <br> - Discuss how fractions, decimals, ratios, and percents can be used to solve real-world problems. <br> Snack Fractions <br> Snack Fractions will be simple during this unit because of the extensive project design in the main lesson pieces. Students simply share and answer orally administered questions (examples provided). <br> The Snack Fraction activities for this lesson will focus on combining and separating fractional parts as well as dividing into eighths. Teacher will facilitate mathematical conversations during this lesson instead of providing a record sheet to students. <br> Energy Balls Recipe: <br> - 1 cup choc chips <br> - $1 / 2$ c oatmeal <br> - $1 / 2 \mathrm{c}$ crunchy peanut butter <br> - $1 / 2 \mathrm{c}$ nuts or sunflower seeds <br> - 1 Thoney <br> - Wheat germ (optional) <br> Prior to lesson, mix all ingredients and store in sandwich baggies (l per group of 4). Students will divide the mixture between four people in their group. But each person needs to receive two energy balls. Once snack is divided equally, students form their portion into two small balls and roll in the wheat germ. <br> QUESTIONS <br> - How do I break this up into equal shares? <br> - What does that fraction represent? <br> - Does this fraction have an easily calculated decimal equivalent? <br> - How can you find the decimal of this fraction? <br> - How did you calculate the percent? <br> - What is the fractional representation of your share and one more friend combined? Two more friends? |
| :---: | :---: |


$\qquad$ ,

We read Bridges! Amazing Structures to Design, Build and Test
by Carol A. Johmann and Elizabeth J Rieth.

The structure we designed and built today was a...

It is used when...


Sincerely,

## Unit 6 Lesson 1 - Family Fun

Dear $\qquad$ ,

Leímos Bridges! Amazing Structures to Design, Build and Test por Carol A. Johmann y Elizabeth J Rieth.

La estructura que diseñamos y construímos hoy fue...

Se usa cuando...


Atentamente,

Materials

- BLM Fraction Action and $X$ Marks the Spot
- BLM Lessons 2-3 CGI Bridges! Amazing Structures to Design, Build and Test

Math Objectives

- Model and solve multistep word problems.
- Solve problems involving fractions, ratios, and proportions.


## Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.

Math and Literature
Vocabulary
technology
engineer
architect
environmentalist
load
dam
suspension

Assessed TEKS for this Unit
$5^{\text {th }}-5.3 \mathrm{H}, 5.3 \mathrm{~K}$
$6^{\text {th }}-6.4 \mathrm{C}, 6.4 \mathrm{D}, 6.4 \mathrm{E}, 6.5 \mathrm{~B}, 6.5 \mathrm{C}$

## Unit 6, Lesson 2 <br> Grades 7-8 <br> Daily Routine <br> 

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab
omitted
Solve It! Multi-step problem solving
omitted

## Fraction Action

- Lesson 1 - omitted
- Lesson 2 - ( $5^{\text {th }}$ assessment item $\mathbf{1 , 2 , 3}$ )
- Lesson $3-\left(5^{\text {th }}\right.$ assessment item 6$) *$ mixed
$X$ Marks the Spot
- Lesson 1 - omitted
- Lesson 2 - ( $\mathbf{6}^{\text {th }}$ assessment item 2)
- Lesson $3-\left(6^{\text {th }}\right.$ assessment item 8$) *$ tip

CGI

- Lesson 1 - omitted
- Lesson 2 - Compare Referent Unknown (5 ${ }^{\text {th }}$ assessment item 5)
- Lesson 3 - Price Partitive Division (6 ${ }^{\text {th }}$ assessment item 6)

The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits.

## OPTIONAL

Target Number
omitted
Money Matters
(If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.)

Unit 6 Lesson 2 - Daily Routines - Fraction Action and $X$ Marks the Spot

## Fraction Action

$$
3 \frac{1}{2}-\frac{3}{8}=?
$$

## $X$ Marks the Spot

Solve for $x$ (approximate answer may be given in fraction or decimal form)

$$
33 \frac{1}{3} \% \text { of } 1=x
$$

Materials

- computer with Internet access (1 per class or 1 per pair of students)
- printer
- BLM My Suspension Bridge

Template

## Literature Selection

Bridges! Amazing Structures to Design, Build, and Test
by Carol A. Johmann and Elizabeth J. Rieth
p. 52, p. 54-56, and p. 58-59

## Math and Literature <br> Vocabulary <br> technology <br> engineer <br> architect <br> environmentalist <br> load <br> dam <br> suspension

## Unit 6, Lesson 2

Classroom Lesson

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Identify math in everyday situations.
- Explain and record observations using objects, words, pictures, numbers and technology.
- Make generalizations from patterns or sets of examples and nonexamples.
- Justify why an answer is reasonable and explain the solution process.
Language Objectives:
- Listen to classmates and to teacher discuss and read.
- Speak, read and write vocabulary words in context.
- Brainstorm and discuss the various problems given.
- Create a chart of sorted items and explain how you decided to sort them.
- Create a list of things to do before building a skyscraper can begin.
- Justify your conclusions based on the results of your investigations.


## Science Objectives:

- Demonstrate safe practices and the use of safety equipment as needed during investigations.
- Plan and implement descriptive investigations, including asking well-defined questions, making inferences, and selecting and using appropriate equipment or technology to answer the questions.
- Collect and record data by observing and measuring, using descriptive words and numerals such as labeled drawing, writing, and concept maps.
- Analyze data and interpret patterns to construct reasonable explanations from data that can be observed and measured.
- Communicate valid, oral and written results supported by data.
- Brainstorm and discuss the various problems given.
- Generate charts to describe the outcomes of investigations.


## Building Background

Review Frayer model vocabulary posters created in Lesson 1. Make any additions to the examples and non-examples if suggested by students.

## Building Background - Literature

Transition to Math Lesson 1 activity allowed students to explore the forces on a suspension bridge using rope and their bodies. Today they will read more about suspension bridges and research famous bridges in the US online.

| Teacher Note |
| :--- |
| If computers or Internet access are |
| not available, please compile |
| information/articles of different |
| well known suspension bridges in |
| the United States PRIOR to the |
| lesson. Distribute the materials to |
| different pairs/groups. Students |
| will use the information you |
| gathered to create a snapshot of |
| their suspension bridge. |

## Technology

Students may want to visit their bridges using Google Earth.

## Unit 6, Lesson 2 <br> Classroom Lesson - continued

Grades 7-8

## Comprehensible Input - Literature

After reading the selected passages from Bridges!, divide the class into pairs and assign them a state from p. 91-92 that has a suspension bridge (noted in list). Pairs are to use www.google.com to research the suspension bridge from the state they are responsible for. Students will use the template provided as a guide to create a snapshot of important information regarding their chosen bridge.

Pairs may use a program such as Microsoft Word or Publisher to create the snapshot or the website
https://thimble.webmaker.org/project/20795/remix to create a meme for their bridge. The meme must meet all of the requirements of the snapshot.

Groups will present their snapshots and add any other interesting facts they discovered during their research. Display snapshots in the classroom or on the word wall.

## Transition to Math

Students will learn about how the forces work on an arch bridge through the activity, Be A Stone in an Arch Bridge, p. 14. Divide the class into two teams (do not have to be exact) and explain that just like the activity during Transition to Math Lesson 1, they are NOT trying to make the other team fall down. The goal is to push toward the center as much as possible WITHOUT making the other team fall. They must create opposite but equal forces.

Repeat the activity with different teams (boys vs. girls, girls vs. girls, boys vs. boys, teacher vs. class, few students vs. many, etc.). Discuss the observations made by the teams after each trial.

- Was it difficult to keep everyone in balance? Why or why not?
- Could you feel the opposite force?
- What was your strategy to keep the other team from falling?
- What adjustments to your force did your team make when you were considered the stronger side?

Explain to students that they will watch the TV Teacher demonstrate how to perform the bridge project for Follow-up Lesson 2. Even though they just completed an activity over forces on an arch bridge, they will return their attention to suspension bridges for the remainder of Lesson 2.

## Objectives

Read through the math and language objectives, making sure that students understand how they accomplished each.

Unit 6 Lesson 2 - Classroom Lesson
One per pair/group

## My Suspension Bridge Template

Work with your partner to research the suspension bridge assigned to you and record the requested information.


Name: $\qquad$
Type: $\qquad$
Built: $\qquad$
Length: $\qquad$
Location: $\qquad$
Creator: $\qquad$
Interesting facts: $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Teacher Note

2012-2013 Math Matters Program STEM Projects

- Pile It On (pgs. 20-21)
- Making Concrete (pgs. 26-28)
- Flood Control (pg. 34)
- Build an Amazing Truss Bridge (pgs. 41-42)

Unit 6, Lesson 2
Grades 7-8
TV Lesson

## Math Objectives:

- Identify math in everyday situations.
- Explain and record observations using objects, words, pictures, numbers and technology.
- Make generalizations from patterns or sets of examples and nonexamples.
- Justify why an answer is reasonable and explain the solution process.


## Language Objectives:

- Listen to classmates and to teacher discuss and read.
- Speak, read and write vocabulary words in context.
- Brainstorm and discuss the various problems given.
- Create a chart of sorted items and explain how you decided to sort them.
- Create a list of things to do before building a skyscraper can begin.
- Justify your conclusions based on the results of your investigations.


## Science Objectives:

- Demonstrate safe practices and the use of safety equipment as needed during investigations.
- Plan and implement descriptive investigations, including asking well-defined questions, making inferences, and selecting and using appropriate equipment or technology to answer the questions.
- Collect and record data by observing and measuring, using descriptive words and numerals such as labeled drawing, writing, and concept maps.
- Analyze data and interpret patterns to construct reasonable explanations from data that can be observed and measured.
- Communicate valid, oral and written results supported by data
- Brainstorm and discuss the various problems given.
- Generate charts to describe the outcomes of investigations.


## Building Background

Students have read through the basics of different bridges, researched well know suspension bridges in the United States, and practiced how forces work on suspension and arch bridges during the Transition to Math activities.

The 2013 summer program projects are listed in the sidebar. Please feel free to integrate or supplement the previously mentioned projects into the curriculum should your class have minimal or no experience with them. Please refer to the literature selection for materials lists and procedures.


|  | Unit 6, Lesson 2 |
| :--- | :--- |
| TV Lesson - continued |  |
| -- Pirate's Corner |  |
| Upload pictures of your suspension bridges to MAS Space and share |  |
| your experiences! Was it hard? Easy? Was your bridge strong enough |  |
| to support a load? If so, how heavy? Did you run into any struggles? |  |
| Did you have to make adjustments to your design? |  |
| Objectives |  |
| Read through the math and language objectives, making sure that |  |
| students understand how they accomplished each. |  |

## Unit 6 Lesson 2 - TV Lesson and Follow-up

One per group

## Hang a Suspension Bridge - Instructions

## Materials:

- 2 kitchen chairs (or any chair that is similar in size and shape)
- spool of heavy string
- 4 heavy books
- masking tape
- cardboard (at least $1 \mathrm{ft} x$ 3 ft )
- scissors
- single hole punch
- spool of thread or light string
- load (of choice - object available in room)


## Instructions:

1) Set up your towers (the chairs) on a rug [if available]. The foundation of your bridge will be the floor. Place the chairs back-toback, as far apart as your arms can reach.
2) Tie the end of the heavy string to a book, which will act as an anchor. Put the book on one chair. Loop the string around the top of the chair and bring it to the other chair. Loop the string around the top of that chair, letting it sag in a curve between the chairs.
3) Cut the string and tie it around another book. Put the book on the other chair. Push this string to one side of the chairs. Make another cable in the same way on the other side. Tie it to the same books as the other one, making sure the two cables are even. The strings between the books and the chairs should be tight. If the string slips off the chairs, tape it in place.

4) Cut and tape cardboard to make a roadway long enough to reach farther than from book to book. It should be slightly wider than the distance between the cables. Lay the deck in place on the books, and put a third book on top. [add another book as a weight to the opposite side -4 books total]
5) For hangers, tie pieces of thread along the length of both cables. Make them long enough so they hang below the deck.
6) Punch holes along the deck where the hangers fall; then, thread a hanger through each hole. Tie them so the hangers are taut and the cardboard deck is level.
7) Now, put a load on your bridge.

*images used from Bridges! Amazing Structures to Design, Build and Test pgs.61-62
Materials

- 2 kitchen chairs (or any chair
that is similar in size and shape)
- spool of heavy string
- 4 heavy books
- masking tape
- cardboard (at least 1 ft x 3 ft )
- scissors
- single hole punch
- spool of thread or light string
- load (of choice - object
available in room)
- BLM Hang a Suspension
Bridge Instructions
Math and Literature
Vocabulary
technology
engineer
architect
environmentalist
load
dam
suspension

Unit 6, Lesson 2
Grades 7-8
Follow-up

Math Objectives:

- Identify math in everyday situations.
- Explain and record observations using objects, words, pictures, numbers and technology.
- Make generalizations from patterns or sets of examples and nonexamples.
- Justify why an answer is reasonable and explain the solution process.


## Language Objectives:

- Listen to classmates and to teacher discuss and read.
- Speak, read and write vocabulary words in context.
- Brainstorm and discuss the various problems given.
- Create a chart of sorted items and explain how you decided to sort them.
- Create a list of things to do before building a skyscraper can begin.
- Justify your conclusions based on the results of your investigations.


## Science Objectives:

- Demonstrate safe practices and the use of safety equipment as needed during investigations.
- Plan and implement descriptive investigations, including asking well-defined questions, making inferences, and selecting and using appropriate equipment or technology to answer the questions.
- Collect and record data by observing and measuring, using descriptive words and numerals such as labeled drawing, writing, and concept maps.
- Analyze data and interpret patterns to construct reasonable explanations from data that can be observed and measured.
- Communicate valid, oral and written results supported by data.
- Brainstorm and discuss the various problems given.
- Generate charts to describe the outcomes of investigations.

Divide class into groups of three-four and distribute materials. Review the activity again making sure to address any questions or concerns.

Students will follow the directions provided on BLM Hanging a Suspension Bridge - Instructions.

Document the process by taking pictures of student groups working on the project.


| Materials <br> - 1 oz turkey <br> - 1 slice Swiss cheese <br> - 1 leaf lettuce <br> - 1 TBS cranberry relish <br> - 1 burrito sized tortilla <br> - 2 paper dessert plates <br> - 2 paper towels <br> - 2 plastic knives <br> All items listed above per partner pair | Unit 6, Lesson 2 Grades 7-8 |
| :---: | :---: |
|  | Snack Fractions |
|  | Students should wash their hands before this activity if using food items. |
|  | Math Objectives <br> - Use addition, subtraction, multiplication and division to solve problems involving fractions, decimals, ratios, and percents. <br> - Convert between fractions, decimals, and percents. |
| Math and Literature <br> Vocabulary <br> technology <br> engineer <br> architect <br> environmentalist <br> load <br> dam <br> suspension | - Estimate to find solutions to problems involving fractions, decimals, and percents. |
|  | Language Objectives <br> - Discuss how fractions, decimals, ratios, and percents can be used to solve real-world problems. |
|  | Snack Fractions |
|  | Snack Fractions will be simple during this unit because of the extensive project design in the main lesson pieces. Students simply share and answer orally administered questions (examples provided). |
|  | The Snack Fraction activities for this lesson will focus on dividing into halves. Teacher will facilitate mathematical conversations during this lesson instead of providing a record sheet to students. |
|  | Students will divide ingredients equally between partners and build their turkey wrap. |
|  | QUESTIONS |
|  | - What is the whole in this situation? <br> - How did you break this up into equal shares if some of the |
|  | ingredients are different shapes and textures? <br> - Does this fraction have an easily calculated decimal equivalent? <br> - How can you find the decimal of this fraction? <br> - How did you calculate the percent? <br> - What would happen if one more person joined your group? |
|  | Once the activity is complete, let them enjoy their snack! |
|  | Snack Fraction Journal Writing: BLM Turkey Wrap-Snack Fractions omitted |
|  | Objectives |
|  | Read through the math and language objectives, making sure that students understand how they accomplished each. |

Dear $\qquad$ ,

We did another project from the book Bridges! Amazing Structures to Design, Build and Test
by Carol A. Johmann and Elizabeth J Rieth.

The structure we designed and built today was a...


A cofferdam could have been used to help build the suspension bridge because...

Sincerely,

| Materials |
| :--- |
| - BLM Fraction Action and $X$ |
| Marks the Spot |
| - BLM Lessons 2-3 CGI |
| Bridges! Amazing Structures to |
| Design, Build and Test |

Math Objectives

- Model and solve multistep word problems.
- Solve problems involving fractions, ratios, and proportions.

Language Objectives

- Speak to partners, teacher, and class using vocabulary.
- Discuss problem solving process and strategies.

Math and Literature
Vocabulary
technology
engineer
architect
environmentalist
load
dam
suspension
Assessed TEKS for this Unit
$5^{\text {th }}-5.3 \mathrm{H}, 5.3 \mathrm{~K}$
$6^{\text {th }}-6.4 \mathrm{C}, 6.4 \mathrm{D}, 6.4 \mathrm{E}, 6.5 \mathrm{~B}, 6.5 \mathrm{C}$

## Unit 6, Lesson 3 <br> Grades 7-8 <br> Daily Routine <br> 

The following daily activities will help prepare your students for the Post-assessment. They are not optional.

## ESSENTIAL

Measurement Lab
omitted
Solve It! Multi-step problem solving omitted

## Fraction Action

- Lesson 1 - omitted
- Lesson 2 - ( $5^{\text {th }}$ assessment item $1,2,3$ )
- Lesson 3 - ( $5^{\text {th }}$ assessment item 6)
$X$ Marks the Spot
- Lesson 1 - omitted
- Lesson $2-\left(6^{\text {th }}\right.$ assessment item 2$)$
- Lesson 3 - ( $6^{\text {th }}$ assessment item 8)

CGI

- Lesson 1 - omitted
- Lesson 2 - Compare Referent Unknown ( $5^{\text {th }}$ assessment item 5)
- Lesson 3 - Price Partitive Division ( $\mathbf{6}^{\text {th }}$ assessment item 6)

The following activities, although certainly developmentally appropriate for your $7^{\text {th }}$ and $8^{\text {th }}$ grade students, do not specifically address objectives assessed on the Post-assessment. Schools with shorter teaching spans can consider omitting some or all these activities as your time permits.

## OPTIONAL

Target Number
omitted
Money Matters
(If you have a full program and wish to use this optional activity, you will find BLMs and Explanations in the Optional Activities Tab of your Teacher's Guide.)

Unit 6 Lesson 3 - Daily Routines - Fraction Action and $X$ Marks the Spot
One per student

## Fraction Action

*approximate thirds

$$
10.33+8 \frac{5}{6}-4 \frac{1}{2}=?
$$

$X$ Marks the Spot
Solve for $x$ (percent of tip)

Joel left an extra $\$ 15$ tip on a bill that was originally $\$ 45$. What percent $(x)$ of the original bill was the tip?

## Materials

- computer with Internet access (1 per class or 1 per pair of students)
- printer
- BLM My Bridge that Lifts Template


## Literature Selection

Bridges! Amazing Structures to Design, Build, and Test
by Carol A. Johmann and Elizabeth J. Rieth
p. 68, p. 70, and top of p. 71
Math and Literature
Vocabulary
technology
engineer
architect
environmentalist
load
dam
suspension

## Unit 6, Lesson 3

Classroom Lesson
Grades 7-8
635

Every day teachers must post the objectives on the board, read them to the students, and have students read them together with the teacher. At the end of the lesson, teacher and students should review to see if they have accomplished both math and language objectives.

## Math Objectives:

- Identify math in everyday situations.
- Explain and record observations using objects, words, pictures, numbers and technology.
- Make generalizations from patterns or sets of examples and nonexamples.
- Justify why an answer is reasonable and explain the solution process.


## Language Objectives:

- Listen to classmates and to teacher discuss and read.
- Speak, read and write vocabulary words in context.
- Brainstorm and discuss the various problems given.
- Create a chart of sorted items and explain how you decided to sort them.
- Create a list of things to do before building a skyscraper can begin.
- Justify your conclusions based on the results of your investigations.


## Science Objectives:

- Demonstrate safe practices and the use of safety equipment as needed during investigations.
- Plan and implement descriptive investigations, including asking well-defined questions, making inferences, and selecting and using appropriate equipment or technology to answer the questions.
- Collect and record data by observing and measuring, using descriptive words and numerals such as labeled drawing, writing, and concept maps.
- Analyze data and interpret patterns to construct reasonable explanations from data that can be observed and measured.
- Communicate valid, oral and written results supported by data.
- Brainstorm and discuss the various problems given.
- Generate charts to describe the outcomes of investigations.


## Building Background

Review Frayer model vocabulary posters created in Lesson 1. Make any additions to the examples and non-examples if suggested by students.

Review some of the suspension bridge snapshots created by the students in Lesson 2.

| Teacher Note <br> If computers or Internet access are not available, please compile information/articles of different well known suspension bridges in the United States PRIOR to the lesson. Distribute the materials to different pairs/groups. Students will use the information you gathered to create a snapshot of their suspension bridge. | Unit 6, Lesson 3 Grades 7-8 <br> Classroom Lesson - continued $\mathbf{O B S O}_{5}^{6}$ |
| :---: | :---: |
|  | Building Background - Literature <br> Transition to Math Lesson 1 and 2 activities allowed students to explore the forces on a suspension and an arch bridge. Today they will read about bridges that move (or lift) and research famous bridges around the world online. |
|  | Comprehensible Input - Literature <br> Repeat activity from Lesson 2, but globally. After reading the selected passages from Bridges!, divide the class into pairs and assign them a state or country from pgs. 91-92 that has a moveable bridge (noted in list). Pairs are to use www.google.com to research the moveable bridge from the state or country they are responsible for. Students will use the template provided as a guide to create a snapshot of important information regarding their chosen bridge. |
| Technology <br> Students may want to visit their bridges using Google Earth. | Pairs may use a program such as Microsoft Word or Publisher to create the snapshot or the website, https://thimble.webmaker.org/project/20795/remix, to create a meme for their bridge. The meme must meet all of the requirements of the snapshot. |
|  | Groups will present their snapshots and add any other interesting facts they discovered during their research. Display snapshots in the classroom or on the word wall. |
|  | Transition to Math <br> Students will continue to learn about how forces work on bridges through the activity, Balance Like a Bridge, p. 14. Divide the class into two teams (do not have to be exact) and explain that just like the activity during Transition to Math Lessons 1 and 2, they are NOT trying to make the other team fall down or throw them off balance. The goal is to balance as much as possible WITHOUT making the other team fall. They must create opposite but equal forces. |
|  | Repeat the activity with different teams (boys vs. girls, girls vs. girls, boys vs. boys, teacher vs. class, few students vs. many, etc.). Discuss the observations made by the teams after each trial. <br> - Was it difficult to keep everyone in balance? Why or why not? <br> - Could you feel the opposite force? <br> - What was your strategy to keep the other team from falling? <br> - What adjustments to the push/pull did your team make when you were considered the stronger side? |


|  | Unit 6, Lesson 3 Grades 7-8 <br> Classroom Lesson - continued 6.50 |
| :---: | :---: |
|  | Explain to students that they will watch the TV Teacher demonstrate how to perform the bridge project for Follow-up Lesson 3. They will turn their attention to bridges that move for the remainder of Lesson 3. <br> Objectives <br> Read through the math and language objectives, making sure that students understand how they accomplished each. |

## Unit 6 Lesson 3 - Classroom Lesson

One per pair/group

## My Bridge That Lifts Template

Work with your partner to research the bridge assigned to you and record the requested information.


Name: $\qquad$
Type: $\qquad$
Built: $\qquad$
Length: $\qquad$
Location:

Creator: $\qquad$
Interesting facts: $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Materials

- hole punch
- scissors
- string
- 2 empty cereal boxes
- 1 piece of thin cardboard (about
the size of the boxes)
- drinking straw cut in half
- BLM Lift That Bridge!
Instructions
Math and Literature
Vocabulary
technology
engineer
architect
environmentalist
load
dam
suspension


## Teacher Note

2012-2013 Math Matters Program
STEM Projects

- Pile It On (pgs. 20-21)
- Making Concrete (pgs. 26-28)
- Flood Control (pg. 34)
- Build an Amazing Truss Bridge (pgs. 41-42)

Unit 6, Lesson 3
TV Lesson

## Math Objectives:

- Identify math in everyday situations.
- Explain and record observations using objects, words, pictures, numbers and technology.
- Make generalizations from patterns or sets of examples and nonexamples.
- Justify why an answer is reasonable and explain the solution process.


## Language Objectives:

- Listen to classmates and to teacher discuss and read.
- Speak, read and write vocabulary words in context.
- Brainstorm and discuss the various problems given.
- Create a chart of sorted items and explain how you decided to sort them.
- Create a list of things to do before building a skyscraper can begin.
- Justify your conclusions based on the results of your investigations.


## Science Objectives:

- Demonstrate safe practices and the use of safety equipment as needed during investigations.
- Plan and implement descriptive investigations, including asking well-defined questions, making inferences, and selecting and using appropriate equipment or technology to answer the questions.
- Collect and record data by observing and measuring, using descriptive words and numerals such as labeled drawing, writing, and concept maps.
- Analyze data and interpret patterns to construct reasonable explanations from data that can be observed and measured.
- Communicate valid, oral and written results supported by data.
- Brainstorm and discuss the various problems given.
- Generate charts to describe the outcomes of investigations.


## Building Background

Students have read through the basics of different bridges, researched well know suspension bridges in the United States, and practiced how forces and balancing works on suspension and arch bridges during the Transition to Math activities.

The 2013 summer program projects are listed in the sidebar. Please feel free to integrate or supplement the previously mentioned projects into the curriculum should your class have minimal or no experience with them. Please refer to the literature selection for materials lists and procedures.
\(\left.$$
\begin{array}{|l|l|}\hline \begin{array}{l}\text { Teacher Note } \\
\text { Captain Portio will introduce } \\
\text { information from Bridges! on p. } \\
\text { 72. }\end{array} & \begin{array}{l}\text { Unit 6, Lesson 3 } \\
\text { TV Lesson - continued }\end{array}
$$ <br>
Comprehensible Input <br>
Review the Engineering Design Process posters. <br>

Students will build a bridge that lifts during Follow-up Lesson 3.\end{array}\right\}\)| Lift That Bridge! (taken directly from Bridges!, p. 73) |
| :--- |

## Unit 6 Lesson 3 - TV Lesson and Follow-up

One per group

## Lift That Bridge! - Instructions

## Materials:

- hole punch
- scissors
- string
- 2 empty cereal boxes
- 1 piece of thin cardboard (about the size of the boxes)
- drinking straw cut in half


## Instructions:

1) To prepare the bridge span, punch a hole in each corner of the cardboard.
2) To prepare the towers, cut the top flaps from each cereal box. Punch holes on the front and back of the boxes. [4 corners]
3) To assemble the bridge, arrange the string guide wires so the span can be raised evenly. Put string through one corner of the span and, then, through the bottom hole of one tower.
4) Bring the string up inside the tower and out a front hole on the same side. Tie the ends together tightly. Repeat for the other corner. Then, repeat for the other tower.

5) Cut two pieces of string, each about 5 feet $(1.5 \mathrm{~m})$. Tie one piece around one hole in the span. Then, lace it through the second hole at the top of the tower and out through the hole in the back. Pull the string through half a straw.
6) Feed the string through the other hole in the back of the tower and out the front. Tie it off at the hole on the other side of the span. Tie it so the straw hangs level, about 2 inches ( 5 cm ) down the tower. Repeat steps 5 and 6 for the other tower.
7) To make your bridge work, grasp the straws and gently pull down. Watch your bridge rise!

*images used from Bridges! Amazing Structures to Design, Build and Test pgs.73-74




Dear $\qquad$ ,

We did another project from the book Bridges! Amazing Structures to Design, Build and Test
by Carol A. Johmann and Elizabeth J Rieth.

This time our bridge moved! We researched moveable bridges across the world and this is what I learned...


Sincerely,


[^0]:    Materials

    - class set of vocabulary cards
    - BLM Silly Association Gallery Walk Discussion
    - BLM King of the MountainGame Instructions (Lesson 2)
    - King of the Mountain Game Board
    - game markers
    - dominoes (1 set per pair)
    - graph paper
    - scratch paper


    ## Literature Selection <br> Spaghetti and Meatballs for All <br> by Marilyn Burns

