6th grade

1779

The equation shown has an unknown number.

$$\Box \div \frac{2}{3} = \frac{3}{4}$$

Enter a fraction that makes the equation true.

$\bullet \bullet \bullet \otimes$
123+-*÷
4 5 6 < = >
789 - ()
0

Suppose $\angle A$ is an angle such that $\cos A < \sin A$. Select **all** angle measures that are possible values for $\angle A$.

- □ 25°
- □ 35°
- □ 45°
- □ 55°
- 65°
- ☐ 75°

4th grade

8th Grade

1860

H

Drag each number to its correct position on the number line.

Mr. Anthony wants to know how some student athletes are improving in the number of push-ups they can do.

These dot plots show the number of push-ups each student was able to do last month and this month.

Number of Push-ups Last Month

What is the increase in the mean number of push-ups from last month to this month?

Consider this graph of a line.

Enter an equation for the line.

← → ⋄ ∅	
123 x y	
456 +-×+	
789 < \ = \ >	
Ο π	

4th grade

1800

Select all the numbers that make this inequality true.

$$2\frac{1}{8} > \square + 1 + \frac{1}{8}$$

- $\frac{4}{8}$
- □ <u>10</u> 8
- 16 16 R

5th grade

Jasmine solves the equation $\Box \div 4 = 363$ using this area model.

Which statement explains how Jasmine should solve for the missing number in the model?

- A Jasmine should divide 60 by 4.
- B Jasmine should divide 1200 by 12.
- © Jasmine should multiply 3 times 60.
- D Jasmine should multiply 4 times 60.

6th grade

1857

Look at the equation.

$$\frac{2}{3} \times \frac{\square}{\square} = n$$

Sarah claims that for any fraction multiplied by $\frac{2}{3}$, n will be less than $\frac{2}{3}$.

To convince Sarah that this statement is only sometimes true:

Part A: Drag one number into each box so the product, n, is less than $\frac{2}{3}$.

Part B: Drag one number into each box so the product, n, is **not** less than $\frac{2}{3}$.

Part A: Product

1

2

3 4

5 6 7

8

9

Part A: Product n is less than $\frac{2}{3}$

 $\frac{2}{3} \times \frac{\square}{\square} = I$

Part B: Product n is not less than $\frac{2}{3}$

 $\frac{2}{3} \times \frac{\square}{\square} = i$