$6^{\text {th }}$ grade
1779
The equation shown has an unknown number.

$$
\square \div \frac{2}{3}=\frac{3}{4}
$$

Enter a fraction that makes the equation true.

Suppose $\angle A$ is an angle such that $\cos A<\sin A$.
Select all angle measures that are possible values for $\angle A$.
$\square \quad 25^{\circ}$
$\square 35^{\circ}$
$\square 45^{\circ}$
$\square 55^{\circ}$
$\square 65^{\circ}$
$\square 75^{\circ}$
$4^{\text {th }}$ grade

1971 Fl	0	© Cole
A student claims that all fractions greater than $\frac{3}{7}$ have a denominator less than 7. Show that the student's claim is only sometimes true.	2 3 4 5 6	\square
A. Drag one number into each box to create a fraction greater than $\frac{3}{7}$ with a denominator less than 7. B. Drag one number into each box to create a fraction greater than $\frac{3}{7}$ with a denominator greater than 7 .	7 8 9	B. Denominator greater than 7

$8^{\text {th }}$ Grade

1860

Drag each number to its correct position on the number line.

1880

Mr. Anthony wants to know how some student athletes are improving in the number of push-ups they can do.

These dot plots show the number of push-ups each student was able to do last month and this month.

What is the increase in the mean number of push-ups from last month to this month?
$8^{\text {th }}$ grade

1863

Consider this graph of a line.

Enter an equation for the line.

$\leftarrow \oplus$ ¢										
1	2	3	x	y						
4	5	6	$+$	-	\times	+				
7	8	9	<	\leq	$=$	\geq	$>$			
0	.	-	믐	\square^{\square}	()	11	$\sqrt{ }$	$\sqrt{0}$		π

$4^{\text {th }}$ grade

1800

Select all the numbers that make this inequality true.
$2 \frac{1}{8}>\square+1+\frac{1}{8}$
$\square \frac{1}{8}$
$\square \frac{4}{8}$
$\square \quad \frac{10}{8}$
$\square \quad \frac{16}{8}$
$5^{\text {th }}$ grade

1890

Jasmine solves the equation \qquad $\div 4=363$ using this area model.

300	4
	1200
60	?
3	12

Which statement explains how Jasmine should solve for the missing number in the model?
(A) Jasmine should divide 60 by 4 .
(B) Jasmine should divide 1200 by 12 .
(C) Jasmine should multiply 3 times 60 .
(D) Jasmine should multiply 4 times 60 .
$6^{\text {th }}$ grade

1857	12	\bigcirc Deate
		Part A: Product n is less than $\frac{2}{3}$
Look at the equation.	3	
$\frac{2}{3} \times \frac{\square}{\square}=n$	4 5 6	$\frac{2}{3} \times \frac{\square}{\square}=n$
Sarah claims that for any	7	
fraction multiplied by $\frac{2}{3}, n$ will	8	
be less than $\frac{2}{3}$.	9	Part B: Product n is not less than $\frac{2}{3}$
To convince Sarah that this statement is only sometimes true:		$\frac{2}{3} \times \frac{\square}{\square}=n$
Part A: Drag one number into each box so the product, n, is		

Part B: Drag one number into each box so the product, n, is not less than $\frac{2}{3}$.

