Grade 6: DOK 3

 statement is true or false.

Part B: Drag numbers into the box to show the combined volume of the shaded cubes.

Grade 6 DOK 2

1859

Two ordered pairs are shown on a coordinate grid.

Drag each ordered pair to its correct location on the coordinate grid.

- $(-a, b)$
- $(a,-b)$
- $(-c,-d)$

Grade 6 DOK 3

$1857 \quad P$

Look at the equation.
$\frac{2}{3} \times \frac{\square}{\square}=n$
Sarah claims that for any
fraction multiplied by $\frac{2}{3}, n$ will
be less than $\frac{2}{3}$.
To convince Sarah that this statement is only sometimes true:

Part A: Drag one number into each box so the product, n, is less than $\frac{2}{3}$.

Part B: Drag one number into each box so the product, n, is not less than $\frac{2}{3}$.

Grade 7 DOK 2

1879

A representative sample of 50 students from a high school is surveyed. Each student is asked what science class he or she is taking.

This table shows the responses.

Science Class	Number of Students
Physics	6
Chemistry	10
Biology	18
Earth Science	4
Health Science	12

Select all of the statements that are valid based on the survey results.About 20\% of students at the high school are taking Chemistry.
\square About twice as many students are taking Health Science than are taking Physics.
\square For every 150 students we could predict that at least 18 of the students are taking Physics.
\square For every 25 students we could predict that at least 4 of the students are taking Earth Science.

Grade 7 DOK 3

Grade 7 DOK 2

1	(\%) Deitete ${ }^{\text {a }}$
$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Part A: Expression greater than $\frac{1}{4}$ $\frac{1}{4} \div \frac{\square}{\square}$
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	Part B: Expression not greater than $\frac{1}{4}$ $\frac{1}{4} \div \frac{\square}{\square}$

Grade 7 DOK 1

1837

Enter the value of p so the expression $\frac{5}{6}-\frac{1}{3} n$ is equivalent to $p(5-2 n)$.

Grade 7 DOK 2

1844

A store is having a sale. Each customer receives either a 15% discount on purchases under $\$ 100$ or a 20% discount on purchases of $\$ 100$ or more. Kelly is purchasing some clothes for $\$ 96.60$ before the discount. She decides to buy the fewest packs of gum that will increase her purchase to over $\$ 100$. The price of each pack of gum is $\$ 0.79$.

After the discount, how much less will Kelly pay by purchasing the clothes and the gum instead of purchasing only the clothes? (Assume there is no sales tax to consider.)
(A) $\$ 1.05$
(B) $\$ 1.67$
(C) $\$ 3.69$
(D) $\$ 3.87$

```
1 8 0 1
```

For each number, indicate whether it is rational or irrational.

	Rational	Irrational
$\frac{4}{7}$	\square	\square
$\sqrt{30}$	\square	\square
$\frac{21}{\sqrt{4}}$	\square	\square
π	\square	\square
-27	\square	\square

Grade 8 DOK 2

1820

A cone with radius 4 feet is shown. Its approximate volume is 165 cubic feet.

Enter the height of the cone, in feet. Round your answer to the nearest hundredth.

Grade 8 DOK 2

1871

Segment $F G$ begins at point $F(-2,4)$ and ends at point $G(-2,-3)$. The segment is translated by $\langle x-3, y+2\rangle$ and then reflected across the y-axis to form segment $F^{\prime} G^{\prime}$.

How many units long is segment $F^{\prime} G^{\prime}$?
(A) 0
(B) 2
(C) 3
(D) 7

Grade 8 DOK 3

1845

A sequence of transformations is applied to a polygon. Select all statements which indicate a sequence of transformations where the resulting polygon has an area greater than the original polygon.Reflect over the x-axis, dilate about the origin by a scale factor of $\frac{1}{2}$, translate up 5 units.

Rotate 90° counterclockwise around the origin, dilate about the origin by a scale factor of $\frac{3}{2}$.Dilate about the origin by a scale factor of $\frac{2}{3}$, rotate 180° clockwise around the origin, translate down 2 units.
\square Dilate about the origin by a scale factor of 2, reflect over the y-axis, dilate about the origin by a scale factor of $\frac{2}{3}$.

Grade 8 DOK 2

1843

The base of triangle $A B C$ and the base of triangle $D E F$ lie on line m, as shown in the diagram.

$m \angle 1+m \angle 2$
$m \angle 5+m \angle 6$

The measure of $\angle 4$ is less than
$m \angle 3$

$m \angle 7$
First Quantity Comparison Second Quantity
$<$
$=$
$>$ the measure of $\angle 8$.

For each comparison, select the

Grade 8 DOK 2

1867

John and Kim wrote down two different functions that have the same rate of change.

John's function is represented by the table shown.

\boldsymbol{x}	\boldsymbol{y}
-1	-5
1	-1
3	3

Use the Add Arrow tool to graph a function that could be Kim's function.

Grade 11 DOK 1

1915

Determine whether each expression is equivalent to $\left(x^{3}+8\right)$. Select Yes or No for each expression.

$(x+8)^{3}$	Yes	No
$(x-2)\left(x^{2}+2 x+4\right)$	\square	\square
$(x+2)\left(x^{2}-2 x+4\right)$	\square	\square

Grade 11 DOK 2

1932

Click on two numbers whose product is irrational.

Grade 11 DOK 2

1899

Enter the value of x such that $3^{\frac{4}{5}} \cdot 3^{\frac{3}{x}}=\sqrt[5]{3^{7}}$ is true.

Grade 11 DOK 2

1951

Click above the numbers to create a dot plot for the given test scores.
$90,45,85,70,85,50,75,85$, $65,75,60,85,80,65,80$

Test Scores

Grade 11 DOK 3

2055

The dot plots below compare the number of minutes 30 flights made by two airlines arrived before or after their scheduled arrival times.

Airline Q

- Negative numbers represent the minutes the flight arrived before its scheduled time.
- Positive numbers represent the minutes the flight arrived after its scheduled time.
- Zero indicates the flight arrived at its scheduled time.

Assuming you want to arrive as close to the scheduled time as possible, from which airline should you buy your ticket? Use the ideas of center and spread to justify your choice.

Grade 11 DOK 2

1922

Jim can paint a house in 12 hours. Alex can paint the same house in 8 hours.

Enter an equation that can be used to find the time in hours, t, it would take Jim and Alex to paint the house together.

Grade 11 DOK 3

2032

The diagram shows the end view of a roll of paper towels when it is full and the end view of the roll after some of the paper towels have been used.

When the full roll of paper towels is unrolled, it has a length of 528 inches of paper towels of uniform width and thickness. Enter the length, in inches, of the paper towels remaining on the partial roll.

Grade 11 DOK 2

1927
At a local fair, the price of admission includes the opportunity for a person to spin a wheel for free ride tickets.

- Each spin of the wheel is a random event.
- The result from each spin of the wheel is independent of the results of previous spins.
- Each spin of the wheel awards tickets according to the probabilities shown below.

Spin the Wheel

1 ticket	35%
2 tickets	25%
3 tickets	20%
5 tickets	15%
10 tickets	5%

Let X be the number of tickets a person wins based on 2 spins. There are 13 possible values for X.
Some values of X are more common than others. For example, winning only 2 tickets in 2 spins is a somewhat
common occurrence with probability 0.1225 . It means the person wins 1 ticket on the first spin and 1 ticket on the second $\operatorname{spin}(0.35 \cdot 0.35)$. A list of the possible values of X and the corresponding probabilities for most values of X is shown below.

Fill in the three missing probability values in the table.

\boldsymbol{X}	Probabilit
2	0.1225
3	0.1750
4	
5	0.1000
6	0.1450
7	0.0750
8	0.0600
10	
11	0.0350
12	0.0250
13	
15	0.0150
20	0.0025

Grade 11 DOK 1

1936

Consider this right triangle.

Determine if each expression is equivalent to the length of $\overline{A C}$. Select Yes or No for each expression.

	Yes	No
$\mathbf{1 3} \sin (B)$	\square	\square
$13 \cos (A)$	\square	\square
$12 \tan (A)$	\square	\square
$12 \tan (B)$	\square	\square

Grade 11 DOK 2

2008

Samantha invented a new outdoor game. The game requires attaching a rope between the tops of two poles of different heights. Read the instructions Samantha created. Use all the given information to determine the maximum allowable distance between the base of pole A and the base of pole B.

Game Instructions

Materials needed: Pole A, Pole B, 10 feet of rope
Setup:

- Place pole A perpendicular to the ground so that its height is 3 feet.
- Place pole B perpendicular to the ground so that its height is 7 feet.
- The length of the rope must extend at least 6 inches past the top of each pole for proper assembly.
- Attach the rope to the top of the two poles.

Enter the maximum distance between the base of pole A and the base of pole B to the nearest whole foot.

