Name \qquad
An equation is shown, where $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} are integers.

$$
y=a|x+b|+c
$$

Kyle claims that this equation will always have two roots.
Sandy claims that this equation will always have zero roots.
Using integers from -5 to 5 create an equation that supports Kyle's claim and describe the effects of the parameters $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} on the shape and position of the graph.

$$
y=\square|x+\square|+\square
$$

Using integers from -5 to 5 create an equation that supports Sandy's claim and describe the effects of the parameters $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} on the shape and position of the graph.

$$
y=\square|x+\square|+\square
$$

Using integers from -5 to 5 create an equation that disproves Kyle's and Sandy's claims and describe the effects of the parameters $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} on the shape and position of the graph.

$$
y=\square|x+\square|+\square
$$

